Light OJ 1429 Assassin`s Creed (II) BFS+缩点+最小路径覆盖

时间:2022-06-09 20:51:02

题目来源:Light OJ 1429 Assassin`s Creed (II)

题意:最少几个人走全然图 能够反复走 有向图

思路:假设是DAG图而且每一个点不能反复走 那么就是裸的最小路径覆盖 如今不是DAG 可能有环 而且每一个点可能反复走 对于有环 能够缩点 缩点之后的图是DAG图 另外点能够反复走和POJ 2594一样 先预处理连通性

#include <cstdio>
#include <cstring>
#include <vector>
#include <queue>
#include <stack>
using namespace std;
const int maxn = 1010; int vis[maxn];
int y[maxn];
vector <int> G[maxn], G2[maxn], G3[maxn];
int n, m;
int a[maxn][maxn]; int pre[maxn];
int low[maxn];
int sccno[maxn];
int dfs_clock;
int scc_cnt;
stack <int> S; void dfs(int u)
{
pre[u] = low[u] = ++dfs_clock;
S.push(u);
for(int i = 0; i < G[u].size(); i++)
{
int v = G[u][i];
if(!pre[v])
{
dfs(v);
low[u] = min(low[u], low[v]);
}
else if(!sccno[v])
low[u] = min(low[u], pre[v]);
}
if(pre[u] == low[u])
{
scc_cnt++;
while(1)
{
int x = S.top();
S.pop();
sccno[x] = scc_cnt;
if(x == u)
break;
}
}
}
void find_scc()
{
dfs_clock = scc_cnt = 0;
memset(sccno, 0, sizeof(sccno));
memset(pre, 0, sizeof(pre));
for(int i = 1; i <= n; i++)
if(!pre[i])
dfs(i);
} void BFS(int u)
{
queue <int> Q;
memset(vis, 0, sizeof(vis));
vis[u] = true;
Q.push(u);
while(!Q.empty())
{
int x = Q.front(); Q.pop();
for(int i = 0; i < G2[x].size(); i++)
{
int v = G2[x][i];
if(vis[v])
continue;
vis[v] = true;
G[u].push_back(v);
Q.push(v);
}
}
}
bool dfs2(int u)
{
for(int i = 0; i < G3[u].size(); i++)
{
int v = G3[u][i];
if(vis[v])
continue;
vis[v] = true;
if(y[v] == -1 || dfs2(y[v]))
{
y[v] = u;
return true;
}
}
return false;
}
int match()
{
int ans = 0;
memset(y, -1, sizeof(y));
for(int i = 1; i <= scc_cnt; i++)
{
memset(vis, 0, sizeof(vis));
if(dfs2(i))
ans++;
}
return ans;
} int main()
{
int cas = 1;
int T;
scanf("%d", &T);
while(T--)
{
scanf("%d %d", &n, &m);
for(int i = 0; i <= n; i++)
G[i].clear(), G2[i].clear(), G3[i].clear();
while(m--)
{
int u, v;
scanf("%d %d", &u, &v);
G2[u].push_back(v);
}
for(int i = 1; i <= n; i++)
BFS(i);
find_scc(); for(int u = 1; u <= n; u++)
{
for(int i = 0; i < G[u].size(); i++)
{
int v = G[u][i];
if(sccno[u] != sccno[v])
G3[sccno[u]].push_back(sccno[v]);
}
}
printf("Case %d: %d\n", cas++, scc_cnt-match());
}
return 0;
}