I have a set of excel format files which needs to be read from spark(2.0.0) as and when an excel file is loaded into a local directory.Scala version used here is 2.11.8.
我有一组excel格式文件,当excel文件加载到本地目录时需要从spark(2.0.0)读取。这里使用的版本是2.11.8。
I've tried using readstream method of sparkSession,but I'm not able to read in a streaming way.I'm able to read excel files statically as:
我尝试过使用sparkSession的readstream方法,但是我无法以流方式读取。我能够静态读取excel文件:
val df = spark.read.format("com.crealytics.spark.excel").option("sheetName", "Data").option("useHeader", "true").load("Sample.xlsx")
Is there any other way of reading excel files in streaming way from a local directory?
有没有其他方法从本地目录以流方式读取excel文件?
Any answers would be helpful.
任何答案都会有所帮助。
Thanks
谢谢
Changes done:
完成的更改:
val spark = SparkSession.builder().master("local[*]").config("spark.sql.warehouse.dir","file:///D:/pooja").appName("Spark SQL Example").getOrCreate()
spark.conf.set("spark.sql.streaming.schemaInference", true)
import spark.implicits._
val dataFrame = spark.readStream.format("csv").option("inferSchema",true).option("header", true).load("file:///D:/pooja/sample.csv")
dataFrame.writeStream.format("console").start()
dataFrame.show()
Updated code:
更新的代码:
val spark = SparkSession.builder().master("local[*]").appName("Spark SQL Example").getOrCreate()
spark.conf.set("spark.sql.streaming.schemaInference", true)
import spark.implicits._
val df = spark.readStream.format("com.crealytics.spark.excel").option("header", true).load("file:///filepath/*.xlsx")
df.writeStream.format("memory").queryName("tab").start().awaitTermination()
val res = spark.sql("select * from tab")
res.show()
Error:
错误:
Exception in thread "main" java.lang.UnsupportedOperationException: Data source com.crealytics.spark.excel does not support streamed reading
Can anyone help me resolve this issue.
任何人都可以帮我解决这个问题。
1 个解决方案
#1
0
For a streaming data frame you have to provide Schema and Currently, DataStreamReader does not support option("inferSchema", true|false). You can set SQLConf setting "spark.sql.streaming.schemaInference", which needs to be set at session level.
对于流数据帧,您必须提供Schema和Current,DataStreamReader不支持选项(“inferSchema”,true | false)。您可以设置SQLConf设置“spark.sql.streaming.schemaInference”,需要在会话级别设置。
You can refer here
你可以参考这里
#1
0
For a streaming data frame you have to provide Schema and Currently, DataStreamReader does not support option("inferSchema", true|false). You can set SQLConf setting "spark.sql.streaming.schemaInference", which needs to be set at session level.
对于流数据帧,您必须提供Schema和Current,DataStreamReader不支持选项(“inferSchema”,true | false)。您可以设置SQLConf设置“spark.sql.streaming.schemaInference”,需要在会话级别设置。
You can refer here
你可以参考这里