【题目大意】
给定一个无向图,点i处有Ai头牛,点i处的牛棚能容纳Bi头牛,求一个最短时间T使得在T时间内所有的牛都能进到某一牛棚里去。(1 <= N <= 200, 1 <= M <= 1500, 0 <= Ai <= 1000, 0 <= Bi <= 1000, 1 <= Dij <= 1,000,000,000)
一开始想拆点建图,0到x集合为汇,值为各个区域的牛数量, Y到终点连边,值为各个区域的容量,然后就是看怎么连x和y了
我一开始把可以连接的X和Y连起来,把可以互达的点在Y集合点那里连边,这样很麻烦,先跑一遍floyd把点到点的最短路求出来,然后直接X和Y集合可达即相连就行
二分结果,再建图,把在mid以内的X点对Y点连起来,跑最大流 判断结果即可
注意要用long long
一开始还没看清题意,一条路上可以同时走无数的牛,我一开始以为只能走一头,还敲MCMF去了。
#include <iostream>
#include <cstdio>
#include <cstring>
#include <algorithm>
#include <vector>
#include <queue>
#define LL long long
#define INF 1LL<<60
using namespace std;
int f,p;
const int maxn=500;
struct Edge
{
int from,to,cap,flow;
};
struct Dinic
{
vector<Edge>edges;
vector<int> G[maxn];
int vis[maxn];
int cur[maxn];
int d[maxn];
void init(int n)
{
edges.clear();
for (int i=0; i<=n; i++)
{
G[i].clear();
}
}
void addedge(int from,int to,int cap)
{
int m;
edges.push_back((Edge)
{
from,to,cap,0
});
edges.push_back((Edge)
{
to,from,0,0
});
m=edges.size();
G[from].push_back(m-2);
G[to].push_back(m-1);
}
bool bfs(int s,int t)
{
memset(vis,0,sizeof vis);
queue<int> q;
q.push(s);
d[s]=0;
vis[s]=1;
while (!q.empty())
{
int u=q.front();
q.pop();
for (int i=0; i<G[u].size(); i++)
{
Edge& e=edges[G[u][i]];
if (!vis[e.to] && e.cap>e.flow)
{
vis[e.to]=1;
d[e.to]=d[u]+1;
q.push(e.to);
}
}
}
return vis[t];
}
int dfs(int x,int a,int t)
{
if (x==t || a==0) return a;
int flow=0,f;
for (int& i=cur[x]; i<G[x].size(); i++)
{
Edge& e=edges[G[x][i]];
if (d[x]+1==d[e.to] && (f=dfs(e.to,min(a,e.cap-e.flow),t))>0)
{
e.flow+=f;
edges[G[x][i]^1].flow-=f;
flow+=f;
a-=f;
if (a==0) break;
}
}
return flow;
}
int maxflow(int s,int t)
{
int flow=0;
while (bfs(s,t))
{ memset(cur,0,sizeof cur);
flow+=dfs(s,100000000,t);
}
return flow;
}
} mcmf;
int A[210],B[210];
LL path[210][210];
LL N;
void floyd()
{
for (int i=1; i<=f; i++)
{
for (int j=1; j<=f; j++)
{
for (int k=1; k<=f; k++)
{
if (j==k) continue;
path[j][k]=min(path[j][k],path[j][i]+path[i][k]);
N=max(N,path[j][k]);
}
}
}
}
int main()
{
//freopen("POJ_2391.in","r",stdin);
int a,b;
LL c;
while (scanf("%d%d",&f,&p)!=EOF)
{
int cur=0;
for (int i=1; i<=f; i++)
{
scanf("%d%d",&A[i],&B[i]);
cur+=A[i];
for(int j=1; j<=f; j++) path[i][j]=INF;
}
for (int i=1; i<=p; i++)
{
scanf("%d%d%lld",&a,&b,&c);
path[a][b]=min(path[a][b],c);
path[b][a]=min(path[b][a],c);
}
N=0;
floyd();
LL l,r,mid;
l=1,r=N;
//cout<<l<<" "<<r<<endl;
LL ans=-1;
while(l<r)
{
mcmf.init(2*f+10);
for (int i=1; i<=f; i++)
{
mcmf.addedge(0,i,A[i]);
mcmf.addedge(i,i+f,1<<30);
}
for (int i=1; i<=f; i++)
{
mcmf.addedge(i+f,2*f+5,B[i]);
}
mid=(r+l)>>1;
for (int i=1;i<=f;i++){
for (int j=1;j<=f;j++){
if (path[i][j]>mid || i==j) continue;
mcmf.addedge(i,f+j,1<<30);
}
}
int res=mcmf.maxflow(0,2*f+5);
if (res>=cur){
//cout<<res<<" "<<cur<<endl;
//cout<<mid<<endl;
ans=mid;
r=mid;
}
else{
l=mid+1;
} }
printf("%lld\n",ans);
}
return 0;
}