【BZOJ 2436】 2436: [Noi2011]Noi嘉年华 (区间DP)

时间:2021-05-09 23:30:56

2436: [Noi2011]Noi嘉年华

Description

NOI2011 在吉林大学开始啦!为了迎接来自全国各地最优秀的信息学选手,
吉林大学决定举办两场盛大的 NOI 嘉年华活动,分在两个不同的地点举办。每
个嘉年华可能包含很多个活动,而每个活动只能在一个嘉年华中举办。 
现在嘉年华活动的组织者小安一共收到了 n个活动的举办申请,其中第 i 个
活动的起始时间为 Si,活动的持续时间为Ti。这些活动都可以安排到任意一个嘉
年华的会场,也可以不安排。 
小安通过广泛的调查发现,如果某个时刻,两个嘉年华会场同时有活动在进
行(不包括活动的开始瞬间和结束瞬间),那么有的选手就会纠结于到底去哪个
会场,从而变得不开心。所以,为了避免这样不开心的事情发生,小安要求不能
有两个活动在两个会场同时进行(同一会场内的活动可以任意进行)。 
另外,可以想象,如果某一个嘉年华会场的活动太少,那么这个嘉年华的吸
引力就会不足,容易导致场面冷清。所以小安希望通过合理的安排,使得活动相
对较少的嘉年华的活动数量最大。 
此外,有一些活动非常有意义,小安希望能举办,他希望知道,如果第i 个
活动必须举办(可以安排在两场嘉年华中的任何一个),活动相对较少的嘉年华
的活动数量的最大值。

Input

输入的第一行包含一个整数 n,表示申请的活动个数。 
接下来 n 行描述所有活动,其中第 i 行包含两个整数 Si、Ti,表示第 i 个活
动从时刻Si开始,持续 Ti的时间。

Output

输出的第一行包含一个整数,表示在没有任何限制的情况下,活动较少的嘉
年华的活动数的最大值。 
接下来 n 行每行一个整数,其中第 i 行的整数表示在必须选择第 i 个活动的
前提下,活动较少的嘉年华的活动数的最大值。

Sample Input

5
8 2
1 5
5 3
3 2
5 3

Sample Output

2
2
1
2
2
2

HINT

在没有任何限制的情况下,最优安排可以在一个嘉年华安排活动 1, 4,而在

另一个嘉年华安排活动 3, 5,活动2不安排。

1≤n≤200 0≤Si≤10^9

1≤Ti≤ 10^9

Source

【分析】

  怎么说,又不会做。。

  这个两个东东的最小值最大不会搞,额,当然这里是不能二分的嘛。。

  也不会在DP中记录,然后题解的方法好像。。称呼其为“定一议二”?就是DP中有一维说的是其中一个人拿了x个区间的情况下,另一个人最多拿多少区间。【很对吧!

  这样子应该是会做第一问了的,n^3DP就可以过。

  但是后面,一个东西必须做的,就会感觉要n^4吧。

  但是有类似单调性的东西,这个后面再详细讲,网上他们都没有仔细说,我是自己推了一下的。

  先看这个大神的详细题解,这个写得真的很清晰很好懂啊!

  【BZOJ 2436】 2436: [Noi2011]Noi嘉年华 (区间DP)

  来自:http://blog.csdn.net/qpswwww/article/details/45251877

  然后说说那个什么递增单凸的。

  首先,显然pre[][x]和suf[][y]都是递减的。

  对于x确定,y在变,f[x][y]=min(x+y,pre[i][x]+num[i][j]+suf[j][y]),显然x+y随y递增而增,pre[i][x]+num[i][j]+suf[j][y]随y递增而减。

  【BZOJ 2436】 2436: [Noi2011]Noi嘉年华 (区间DP)

  就是这样的,下面标红的函数就是真正的函数,显然是上凸的了。

  所以程序里面y按顺序,找到一个now<当前最优值 就可以break了。

  然后说明一个就是随着x的增加,取最优值的y单调递减。这个画个图也可以看出来了。

  【BZOJ 2436】 2436: [Noi2011]Noi嘉年华 (区间DP)

  所以就是这样做了,y这里均摊的话,就是O(n^3)

  【调了一晚上好内伤,我好蠢啊。。

 #include<cstdio>
#include<cstdlib>
#include<cstring>
#include<iostream>
#include<algorithm>
using namespace std;
#define Maxn 210
#define INF 0xfffffff int n,p;
int mymax(int x,int y) {return x>y?x:y;}
int mymin(int x,int y) {return x<y?x:y;} int s[Maxn],t[Maxn],num[*Maxn][*Maxn];
int pre[*Maxn][*Maxn],suf[*Maxn][*Maxn],f[*Maxn][*Maxn]; struct node {int x,y;}a[*Maxn];
bool cmp(node x,node y) {return x.x<y.x;} void init()
{
scanf("%d",&n);
for(int i=;i<=n;i++)
{
scanf("%d%d",&s[i],&t[i]);
t[i]+=s[i];
a[i*-].x=s[i];a[i*-].y=i;
a[i*].x=t[i];a[i*].y=-i;
}
sort(a+,a++n*,cmp);
p=;
for(int i=;i<=n*;i++)
{
if(i==||a[i].x!=a[i-].x) p++;
if(a[i].y>) s[a[i].y]=p;
else t[-a[i].y]=p;
}
memset(num,,sizeof(num));
memset(pre,,sizeof(pre));
memset(suf,,sizeof(suf));
for(int i=;i<=p;i++)
for(int j=i;j<=p;j++)
for(int k=;k<=n;k++) if(s[k]>=i&&t[k]<=j) num[i][j]++; for(int i=;i<=p;i++)
for(int j=;j<=n;j++)
for(int k=;k<=i;k++)
{
if(j>num[][i]) {pre[i][j]=-INF;continue;}
pre[i][j]=mymax(pre[i][j],pre[k][j]+num[k][i]);
if(j>=num[k][i]) pre[i][j]=mymax(pre[i][j],pre[k][j-num[k][i]]);
}//printf("\n");
for(int i=p;i>=;i--)
for(int j=;j<=n;j++)
for(int k=i;k<=p;k++)
{
if(j>num[i][p]) {suf[i][j]=-INF;continue;}
suf[i][j]=mymax(suf[i][j],suf[k][j]+num[i][k]);
if(j>=num[i][k]) suf[i][j]=mymax(suf[i][j],suf[k][j-num[i][k]]);
}
} int main()
{
init(); int ans=;
for(int i=;i<=p;i++)
for(int j=i;j<=p;j++)
{
int y=num[j][p];
for(int x=;x<=num[][i];x++)
{
int id;
for(;y>=;y--)
{
int nw=mymin(x+y,pre[i][x]+num[i][j]+suf[j][y]);
if(f[i][j]<=nw)
{
f[i][j]=nw;
id=y;
}
else break;
}
y=id;
}
ans=mymax(ans,f[i][j]);
} for(int i=;i<=p;i++)
for(int j=p;j>=i;j--) f[i][j]=mymax(f[i][j],f[i][j+]);
for(int i=;i<=p;i++)
for(int j=i;j<=p;j++) f[i][j]=mymax(f[i][j],f[i-][j]);
printf("%d\n",ans);
for(int i=;i<=n;i++)
printf("%d\n",f[s[i]][t[i]]); return ;
}

2017-03-22 21:47:30