spark streaming窗口函数的使用和理解

时间:2022-09-24 20:49:34

spark  streaming中的窗口函数虽然不如flink那么丰富,但是特别有用,看下面例子:

  kafkaStream.transform { rdd =>
      offsetRanges = rdd.asInstanceOf[HasOffsetRanges].offsetRanges
      rdd}.map(_._2).map((_, 1)).reduceByKeyAndWindow((v1: Int, v2: Int) => {
      v1 + v2
    }, Seconds(8), 
      Seconds(4))

表示每隔4秒(后面的4秒),计算最近8秒(前面的8秒)的数据。


第一个时间称为窗口长度,第二个时间称为滑动长度,其含义表示每隔4秒计算最近最近8秒的数据,这可以用于一些业务场景,例如网站记录,每隔1个小时计算最近两个小时的pv量,还有一种业务场景的话先在内存中做累加再更新到redis中做累加,比如说每隔5秒统计最近5秒的数据的总和,再刷到redis中做累加,因为频繁操作redis的话会存在问题,还有一个时间如下:

val ssc = new StreamingContext(sparkConf, Seconds(4))
此处设置的batch Interval是在spark streaming中生成基本Job的时间单位,窗口和滑动时间间隔一定是该batch Interval的整数倍,若要在内存中做简单的累加只要设置窗口长度和滑动长度相同即可。


持久化:

因为要窗口函数要用前面所用到的rdd,在这里必须checkpoint,



看下面一个例子:

package com.jingde.sparkstreamlast
import kafka.serializer.StringDecoder
import org.apache.log4j.{ Level, Logger }
import org.apache.spark.SparkConf
import org.apache.spark.rdd.RDD
import org.apache.spark.streaming.kafka._
import org.apache.spark.streaming.{ Seconds, StreamingContext }
import org.apache.spark.streaming.kafka.KafkaUtils
import org.apache.spark.streaming.kafka.OffsetRange
import org.apache.log4j.{ Level, Logger }
import org.I0Itec.zkclient.ZkClient
import org.I0Itec.zkclient.exception.ZkMarshallingError
import org.I0Itec.zkclient.serialize.ZkSerializer
import kafka.utils.ZkUtils
import kafka.utils.ZKGroupTopicDirs
import org.apache.spark.streaming.dstream.InputDStream
import kafka.common.TopicAndPartition
import kafka.message.MessageAndMetadata
import kafka.api.OffsetRequest
import kafka.api.PartitionOffsetRequestInfo
import kafka.consumer.SimpleConsumer
import kafka.api.TopicMetadataRequest
object StreamingFromKafka {
  val groupId = "logs"
  val topic = "streaming"
  val zkClient = new ZkClient("localhost:9999", 60000, 60000, new ZkSerializer {
    override def serialize(data: Object): Array[Byte] = {
      try {
        return data.toString().getBytes("UTF-8")
      } catch {
        case e: ZkMarshallingError => return null
      }
    }
    override def deserialize(bytes: Array[Byte]): Object = {
      try {
        return new String(bytes, "UTF-8")
      } catch {
        case e: ZkMarshallingError => return null
      }
    }
  })
  val topicDirs = new ZKGroupTopicDirs("spark_streaming_test", topic)
  val zkTopicPath = s"${topicDirs.consumerOffsetDir}"
  def main(args: Array[String]): Unit = {
    Logger.getLogger("org.apache.spark").setLevel(Level.WARN)
    Logger.getLogger("org.eclipse.jetty.server").setLevel(Level.OFF)
    val sparkConf = new SparkConf().setAppName("DirectKafkaWordCount")
    sparkConf.setMaster("local[*]")
    sparkConf.set("spark.streaming.kafka.maxRatePerPartition", "2")
    sparkConf.set("spark.serializer", "org.apache.spark.serializer.KryoSerializer")
    val ssc = new StreamingContext(sparkConf, Seconds(5))
    val kafkaParams = Map("metadata.broker.list" -> "localhost:9092", "group.id" -> groupId, "zookeeper.connect" -> "localhost:9999",
      "auto.offset.reset" -> kafka.api.OffsetRequest.SmallestTimeString)
    val topics = Set(topic)
    val children = zkClient.countChildren(s"${topicDirs.consumerOffsetDir}")
    var kafkaStream: InputDStream[(String, String)] = null
    var fromOffsets: Map[TopicAndPartition, Long] = Map()
    ssc.checkpoint("D:\\tmp\\storm-hdfs") //这里是hdfs路径,因为要做窗口函数,需要用到前面的rdd,这里必须要用checkpoint
     if (children > 0) {
      //---get partition leader begin----  
      val topicList = List(topic)
      val req = new TopicMetadataRequest(topicList, 0) //得到该topic的一些信息,比如broker,partition分布情况  
      val getLeaderConsumer = new SimpleConsumer("localhost", 9092, 10000, 10000, "OffsetLookup") // brokerList的host 、brokerList的port、过期时间、过期时间 
      val res = getLeaderConsumer.send(req) //TopicMetadataRequest   topic broker partition 的一些信息  
      val topicMetaOption = res.topicsMetadata.headOption
      val partitions = topicMetaOption match {
        case Some(tm) =>
          tm.partitionsMetadata.map(pm => (pm.partitionId, pm.leader.get.host)).toMap[Int, String]
        case None =>
          Map[Int, String]()
      }
      for (i <- 0 until children) {
        val partitionOffset = zkClient.readData[String](s"${topicDirs.consumerOffsetDir}/${i}")
        val tp = TopicAndPartition(topic, i)
        //---additional begin-----  
        val requestMin = OffsetRequest(Map(tp -> PartitionOffsetRequestInfo(OffsetRequest.EarliestTime, 1))) // -2,1  
        val consumerMin = new SimpleConsumer(partitions(i), 9092, 10000, 10000, "getMinOffset")
        val curOffsets = consumerMin.getOffsetsBefore(requestMin).partitionErrorAndOffsets(tp).offsets
        var nextOffset = partitionOffset.toLong
        if (curOffsets.length > 0 && nextOffset < curOffsets.head) { //如果下一个offset小于当前的offset  
          nextOffset = curOffsets.head
        }
        //---additional end-----  
        fromOffsets += (tp -> nextOffset)
        fromOffsets += (tp -> partitionOffset.toLong) //将不同 partition 对应的 offset 增加到 fromOffsets 中
      }
      val messageHandler = (mmd: MessageAndMetadata[String, String]) => (mmd.topic, mmd.message()) //这个会将 kafka 的消息进行 transform,最终 kafak 的数据都会变成 (topic_name, message) 这样的 tuple
      kafkaStream = KafkaUtils.createDirectStream[String, String, StringDecoder, StringDecoder, (String, String)](ssc, kafkaParams, fromOffsets, messageHandler)
    } else {
      kafkaStream = KafkaUtils.createDirectStream[String, String, StringDecoder, StringDecoder](ssc, kafkaParams, topics)
    }
    var offsetRanges = Array[OffsetRange]()
    kafkaStream.transform { rdd =>
      offsetRanges = rdd.asInstanceOf[HasOffsetRanges].offsetRanges
      rdd
    }.map(_._2).map((_, 1)).reduceByKeyAndWindow((v1: Int, v2: Int) => {
      v1 + v2
    }, Seconds(5), //每隔5秒(后面的5秒),计算最近5秒(前面的5秒)的数据
      Seconds(5)).foreachRDD {
        rdd =>
          rdd.foreachPartition { element => element.foreach {
            
            println } }
          for (o <- offsetRanges) {
            ZkUtils.updatePersistentPath(zkClient, s"${topicDirs.consumerOffsetDir}/${o.partition}", o.fromOffset.toString)
          }
      }
    ssc.start()
    ssc.awaitTermination()
  }
}