Spark Streaming接收Kafka数据存储到Hbase
主要参考了这篇文章https://yq.aliyun.com/articles/60712([点我])(https://yq.aliyun.com/articles/60712), 不过这篇文章使用的spark貌似是spark1.x的。我这里主要是改为了spark2.x的方式
kafka生产数据
闲话少叙,直接上代码:
-
import java.util.{Properties, UUID}
-
-
import org.apache.kafka.clients.producer.{KafkaProducer, ProducerRecord}
-
import org.apache.kafka.common.serialization.StringSerializer
-
-
import scala.util.Random
-
-
-
object KafkaProducerTest {
- def main(args: Array[String]): Unit = {
- val rnd = new Random()
-
// val topics = "world"
- val topics = "test"
- val brokers = "localhost:9092"
- val props = new Properties()
- props.put("delete.topic.enable", "true")
- props.put("key.serializer", classOf[StringSerializer])
-
// props.put("value.serializer", "org.apache.kafka.common.serialization.StringDeserializer")
- props.put("value.serializer", classOf[StringSerializer])
- props.put("bootstrap.servers", brokers)
- //props.put("batch.num.messages","10");//props.put("batch.num.messages","10");
-
- //props.put("queue.buffering.max.messages", "20");
- //linger.ms should be 0~100 ms
- props.put("linger.ms", "50")
- //props.put("block.on.buffer.full", "true");
- //props.put("max.block.ms", "100000");
- //batch.size and buffer.memory should be changed with "the kafka message size and message sending speed"
- props.put("batch.size", "16384")
- props.put("buffer.memory", "1638400")
-
- props.put("queue.buffering.max.messages", "1000000")
- props.put("queue.enqueue.timeout.ms", "20000000")
- props.put("producer.type", "sync")
-
- val producer = new KafkaProducer[String,String](props)
- for(i <- 1001 to 2000){
- val key = UUID.randomUUID().toString.substring(0,5)
- val value = "fly_" + i + "_" + key
- producer.send(new ProducerRecord[String, String](topics,key, value))//.get()
-
- }
-
- producer.flush()
- }
- }
-
生产的数据格式为(key,value) = (uuid, fly_i_key) 的形式
spark streaming 读取kafka并保存到hbase
当kafka里面有数据后,使用spark streaming 读取,并存。直接上代码:
-
import java.util.UUID
-
-
import org.apache.hadoop.hbase.HBaseConfiguration
-
import org.apache.hadoop.hbase.client.{Mutation, Put}
-
import org.apache.hadoop.hbase.io.ImmutableBytesWritable
-
import org.apache.hadoop.hbase.mapreduce.TableOutputFormat
-
import org.apache.hadoop.hbase.util.Bytes
-
import org.apache.hadoop.mapred.JobConf
-
import org.apache.hadoop.mapreduce.OutputFormat
-
import org.apache.kafka.clients.consumer.ConsumerRecord
-
import org.apache.kafka.common.serialization.StringDeserializer
-
import org.apache.spark.rdd.RDD
-
import org.apache.spark.sql.SparkSession
-
import org.apache.spark.streaming.kafka010.ConsumerStrategies.Subscribe
-
import org.apache.spark.streaming.kafka010.KafkaUtils
-
import org.apache.spark.streaming.kafka010.LocationStrategies.PreferConsistent
-
import org.apache.spark.streaming.{Seconds, StreamingContext}
-
-
/**
-
* spark streaming 写入到hbase
-
* Sparkstreaming读取Kafka消息再结合SparkSQL,将结果保存到HBase
-
*/
-
-
-
object OBDSQL {
- case class Person(name: String, age: Int, key: String)
-
- def main(args: Array[String]): Unit = {
- val spark = SparkSession
- .builder()
- .appName("sparkSql")
- .master("local[4]")
- .getOrCreate()
-
- val sc = spark.sparkContext
-
- val ssc = new StreamingContext(sc, Seconds(5))
-
- val topics = Array("test")
- val kafkaParams = Map(
- "bootstrap.servers" -> "localhost:9092,anotherhost:9092",
- "key.deserializer" -> classOf[StringDeserializer],
- "value.deserializer" -> classOf[StringDeserializer],
- // "group.id" -> "use_a_separate_group_id_for_each_stream",
- "group.id" -> "use_a_separate_group_id_for_each_stream_fly",
- // "auto.offset.reset" -> "latest",
- "auto.offset.reset" -> "earliest",
- // "auto.offset.reset" -> "none",
- "enable.auto.commit" -> (false: java.lang.Boolean)
- )
-
- val lines = KafkaUtils.createDirectStream[String, String](
- ssc,
- PreferConsistent,
- Subscribe[String, String](topics, kafkaParams)
- )
-
-
// lines.map(record => (record.key, record.value)).print()
-
// lines.map(record => record.value.split("_")).map(x=> (x(0),x(1), x(2))).print()
-
- lines.foreachRDD((rdd: RDD[ConsumerRecord[String, String]]) => {
- import spark.implicits._
- if (!rdd.isEmpty()) {
-
- // temp table
- rdd.map(_.value.split("_")).map(p => Person(p(0), p(1).trim.toInt, p(2))).toDF.createOrReplaceTempView("temp")
-
- // use spark sql
- val rs = spark.sql("select * from temp")
-
- // create hbase conf
- val hconf = HBaseConfiguration.create
- hconf.set("hbase.zookeeper.quorum", "localhost"); //ZKFC
- hconf.set("hbase.zookeeper.property.clientPort", "2181")
- hconf.set("hbase.defaults.for.version.skip", "true")
- hconf.set(TableOutputFormat.OUTPUT_TABLE, "t1") // t1是表名, 表里面有一个列簇 cf1
- hconf.setClass("mapreduce.job.outputformat.class", classOf[TableOutputFormat[String]], classOf[OutputFormat[String, Mutation]])
- val jobConf = new JobConf(hconf)
-
- // convert every line to hbase lines
- rs.rdd.map(line => {
- val put = new Put(Bytes.toBytes(UUID.randomUUID().toString.substring(0, 9)))
- put.addColumn(Bytes.toBytes("cf1")
- , Bytes.toBytes("name")
- , Bytes.toBytes(line.get(0).toString)
- )
- put.addColumn(Bytes.toBytes("cf1")
- , Bytes.toBytes("age")
- , Bytes.toBytes(line.get(1).toString)
- )
- put.addColumn(Bytes.toBytes("cf1")
- , Bytes.toBytes("key")
- , Bytes.toBytes(line.get(2).toString)
- )
- (new ImmutableBytesWritable, put)
- }).saveAsNewAPIHadoopDataset(jobConf)
- }
- })
-
- lines.map(record => record.value.split("_")).map(x=> (x(0),x(1), x(2))).print()
-
- ssc start()
- ssc awaitTermination()
-
- }
- }
-