两个算法如何与O(n ^ 2)另一个Ω(n)具有大约相同的运行时间?

时间:2021-11-04 20:41:10

How can two algorithms

怎么可以两种算法

  • one with O(n²)
  • 一个带O(n²)

  • the other with Ω(n)
  • 另一个用Ω(n)

have the same practical run time, when testing the algorithms with a large number?

在测试大量算法时,是否具有相同的实际运行时间?

1 个解决方案

#1


O(f(n)) is a set of functions that grow proportionally to f(n) or slower.

O(f(n))是一组与f(n)或更慢成比例增长的函数。

Ω(f(n)) is a set of functions that grow proportionally to f(n) or faster.

Ω(f(n))是一组与f(n)或更快成比例增长的函数。

There are many functions that grow at least as fast as n, but not faster than n^2. For example: n, n*log n, n^1.5, n^2.

有许多函数的增长速度至少和n一样快,但不会快于n ^ 2。例如:n,n * log n,n ^ 1.5,n ^ 2。

#1


O(f(n)) is a set of functions that grow proportionally to f(n) or slower.

O(f(n))是一组与f(n)或更慢成比例增长的函数。

Ω(f(n)) is a set of functions that grow proportionally to f(n) or faster.

Ω(f(n))是一组与f(n)或更快成比例增长的函数。

There are many functions that grow at least as fast as n, but not faster than n^2. For example: n, n*log n, n^1.5, n^2.

有许多函数的增长速度至少和n一样快,但不会快于n ^ 2。例如:n,n * log n,n ^ 1.5,n ^ 2。