题链:
http://www.lydsy.com/JudgeOnline/problem.php?id=1855
题解:
DP,单调队列优化。
(好久没做 DP题,居然还意外地想出来了)
定义 dp[i][k] 表示前 i天,手上还有 k股的最大收益。
(注意这个定义是个前缀的形式)
假设枚举到了第 i天,令 j=i-W-1。
那么dp[i][]就由dp[j][]转移而来。(说了是前缀形式的啦,就不要去枚举 j-1,j-2...了)
转移还是比较显然的:
枚举第 i 天结束手上还剩的股数 k:
枚举今日购买 d张:cmax(dp[i][k],dp[j][k-d]-d*AP);
枚举今日卖出 d张:cmax(dp[i][k],dp[j][k+d]+d*BP);
然后再来一个前缀的转移:cmax(dp[i][k],dp[i-1][k]);
这个复杂度是 T*MAXP*MAXP的,只能过 50分。
考虑优化(以购买转移为例),
显然转移的区间为连续的一段,
即若对于 dp[i][k]来说,转移来源是 dp[j][k-1]~dp[j][k-AS]。
且不难发现,如果 k-1>=x>y>=k-AS,且 dp[j][x] > dp[j][y]-val (val=(x-y)*AP),
那么如论如何dp[j][y]都不可能贡献答案。
所以就用单调队列维护每次转移的最值就好啦。
一个小技巧:在从 计算 dp[i][k] 到 计算 dp[i][k+1] 时,
显然单调队列里的旧元素的贡献相比刚刚加进队列的 newval=dp[j][k]来说都会减一个 AP,
但不好整体修改,(难道你想用数据结构维护?)
所以就令新加进队列的值 newval=dp[j][k]+k*AP,
保持好队列里的元素的相对大小关系就好了(即dp[j][k-1]始终比dp[j][k]多减了一个AP)。
(卖出的转移就类似了。)
最终复杂度可以做到 T*MAXP
代码:
#include<cstdio>
#include<cstring>
#include<iostream>
#define MAXN 2005
#define ll long long
#define filein(x) freopen(#x".in","r",stdin);
#define fileout(x) freopen(#x".out","w",stdout);
using namespace std;
ll dp[MAXN][MAXN],qv[MAXN],ANS,newval;
int T,MAXP,W,AP,BP,AS,BS,qk[MAXN];
void cmax(ll &a,ll b){
if(a<b) a=b;
}
int main()
{
filein(trade); fileout(trade);
memset(dp,0xcc,sizeof(dp)); dp[0][0]=0;
scanf("%d%d%d",&T,&MAXP,&W);
for(int i=1,j,l,r;i<=T;i++){ //2000
scanf("%d%d%d%d",&AP,&BP,&AS,&BS);
j=max(i-W-1,0);
for(int k=0;k<=MAXP;k++)//50->2000 //前缀形式,今日不做任何操作
cmax(dp[i][k],dp[i-1][k]);
l=1;r=1; qk[l]=0; qv[l]=dp[j][0];
for(int k=1;k<=MAXP;k++){//50->2000
//购置
//for(int d=1;d<=AS&&k-d>=0;d++) cmax(dp[i][k],dp[j][k-d]-1ll*d*AP);
while(l<=r&&k-qk[l]>AS) l++;
cmax(dp[i][k],dp[j][qk[l]]-1ll*(k-qk[l])*AP);
newval=dp[j][k]+1ll*k*AP;
while(l<=r&&qv[r]<=newval) r--;
r++; qk[r]=k; qv[r]=newval;
}
l=1;r=1; qk[l]=MAXP; qv[l]=dp[j][MAXP];
for(int k=MAXP-1;k>=0;k--){//50->2000
//出售
//for(int d=1;d<=BS&&k+d<=MAXP;d++) cmax(dp[i][k],dp[j][k+d]+1ll*d*BP);
while(l<=r&&qk[l]-k>BS) l++;
cmax(dp[i][k],dp[j][qk[l]]+1ll*(qk[l]-k)*BP);
newval=dp[j][k]-1ll*(MAXP-k)*BP;
while(l<=r&&qv[r]<=newval) r--;
r++; qk[r]=k; qv[r]=newval;
}
}
//for(int k=0;k<=MAXP;k++) cmax(ANS,dp[T][k]);
cout<<dp[T][0];
return 0;
}