【吴恩达课后编程作业】Course 1 - 神经网络和深度学习 - 第三周作业 - 带有一个隐藏层的平面数据分类
声明
首先声明本文参考【Kulbear】的github上的文章,本文参考Planar data classification with one hidden layer,我基于他的文章加以自己的理解发表这篇博客,力求让大家以最轻松的姿态理解吴恩达的视频,如有不妥的地方欢迎大家指正。
本文所使用的资料已上传到百度网盘【点击下载】,请在开始之前下载好所需资料,或者在本文底部copy资料代码。
【博主使用的python版本:3.6.2】
开始之前
在开始之前,我们简单说一下我们要做什么。我们要建立一个神经网络,它有一个隐藏层。你会发现这个模型和上一个逻辑回归实现的模型有很大的区别。你可以跟随我的步骤在Jupyter Notebook中一步步地把代码填进去,也可以直接复制完整代码,在完整代码在本文底部,testCases.py和planar_utils.py的完整代码也在最底部。在这篇文章中,我们会讲到以下的知识:
- 构建具有单隐藏层的2类分类神经网络。
- 使用具有非线性激活功能激活函数,例如tanh。
- 计算交叉熵损失(损失函数)。
- 实现向前和向后传播。
准备软件包
我们需要准备一些软件包:
- numpy:是用Python进行科学计算的基本软件包。
- sklearn:为数据挖掘和数据分析提供的简单高效的工具。
- matplotlib :是一个用于在Python中绘制图表的库。
- testCases:提供了一些测试示例来评估函数的正确性,参见下载的资料或者在底部查看它的代码。
- planar_utils :提供了在这个任务中使用的各种有用的功能,参见下载的资料或者在底部查看它的代码。
import numpy as np
import matplotlib.pyplot as plt
from testCases import *
import sklearn
import sklearn.datasets
import sklearn.linear_model
from planar_utils import plot_decision_boundary, sigmoid, load_planar_dataset, load_extra_datasets
#%matplotlib inline #如果你使用用的是Jupyter Notebook的话请取消注释。
np.random.seed(1) #设置一个固定的随机种子,以保证接下来的步骤中我们的结果是一致的。
加载和查看数据集
首先,我们来看看我们将要使用的数据集, 下面的代码会将一个花的图案的2类数据集加载到变量X和Y中。
X, Y = load_planar_dataset()
把数据集加载完成了,然后使用matplotlib可视化数据集,代码如下:
plt.scatter(X[0, :], X[1, :], c=Y, s=40, cmap=plt.cm.Spectral) #绘制散点图
数据看起来像一朵红色(y = 0)和一些蓝色(y = 1)的数据点的花朵的图案。 我们的目标是建立一个模型来适应这些数据。现在,我们已经有了以下的东西:
- X:一个numpy的矩阵,包含了这些数据点的数值
- Y:一个numpy的向量,对应着的是X的标签【0 | 1】(红色:0 , 蓝色 :1)
我们继续来仔细地看数据:
shape_X = X.shape
shape_Y = Y.shape
m = Y.shape[1] # 训练集里面的数量
print ("X的维度为: " + str(shape_X))
print ("Y的维度为: " + str(shape_Y))
print ("数据集里面的数据有:" + str(m) + " 个")
运行结果为:
X的维度为: (2, 400)
Y的维度为: (1, 400)
数据集里面的数据有:400 个
查看简单的Logistic回归的分类效果
在构建完整的神经网络之前,先让我们看看逻辑回归在这个问题上的表现如何,我们可以使用sklearn的内置函数来做到这一点, 运行下面的代码来训练数据集上的逻辑回归分类器。
clf = sklearn.linear_model.LogisticRegressionCV()
clf.fit(X.T,Y.T)
这里会打印出以下的信息(不同的机器提示大同小异):
E:\Anaconda3\lib\site-packages\sklearn\utils\validation.py:547: DataConversionWarning: A column-vector y was passed when a 1d array was expected. Please change the shape of y to (n_samples, ), for example using ravel().
y = column_or_1d(y, warn=True)
我们可以把逻辑回归分类器的分类绘制出来:
plot_decision_boundary(lambda x: clf.predict(x), X, Y) #绘制决策边界
plt.title("Logistic Regression") #图标题
LR_predictions = clf.predict(X.T) #预测结果
print ("逻辑回归的准确性: %d " % float((np.dot(Y, LR_predictions) +
np.dot(1 - Y,1 - LR_predictions)) / float(Y.size) * 100) +
"% " + "(正确标记的数据点所占的百分比)")
我们看一看都打印了些什么吧!
逻辑回归的准确性: 47 % (正确标记的数据点所占的百分比)
准确性只有47%的原因是数据集不是线性可分的,所以逻辑回归表现不佳,现在我们正式开始构建神经网络。
搭建神经网络
我们要搭建的神经网络模型如下图:
当然还有我们的理论基础(不懂可以去仔细看看视频):
对于
而言:
给出所有示例的预测结果,可以按如下方式计算成本J:
构建神经网络的一般方法是:
1. 定义神经网络结构(输入单元的数量,隐藏单元的数量等)。
2. 初始化模型的参数
3. 循环:
- 实施前向传播
- 计算损失
- 实现向后传播
- 更新参数(梯度下降)
我们要它们合并到一个nn_model() 函数中,当我们构建好了nn_model()并学习了正确的参数,我们就可以预测新的数据。
定义神经网络结构
在构建之前,我们要先把神经网络的结构给定义好:
- n_x: 输入层的数量
- n_h: 隐藏层的数量(这里设置为4)
- n_y: 输出层的数量
def layer_sizes(X , Y):
""" 参数: X - 输入数据集,维度为(输入的数量,训练/测试的数量) Y - 标签,维度为(输出的数量,训练/测试数量) 返回: n_x - 输入层的数量 n_h - 隐藏层的数量 n_y - 输出层的数量 """
n_x = X.shape[0] #输入层
n_h = 4 #,隐藏层,硬编码为4
n_y = Y.shape[0] #输出层
return (n_x,n_h,n_y)
我们来测试一下:
#测试layer_sizes
print("=========================测试layer_sizes=========================")
X_asses , Y_asses = layer_sizes_test_case()
(n_x,n_h,n_y) = layer_sizes(X_asses,Y_asses)
print("输入层的节点数量为: n_x = " + str(n_x))
print("隐藏层的节点数量为: n_h = " + str(n_h))
print("输出层的节点数量为: n_y = " + str(n_y))
运行结果如下:
=========================测试layer_sizes=========================
输入层的节点数量为: n_x = 5
隐藏层的节点数量为: n_h = 4
输出层的节点数量为: n_y = 2
初始化模型的参数
在这里,我们要实现函数initialize_parameters()。我们要确保我们的参数大小合适,如果需要的话,请参考上面的神经网络图。
我们将会用随机值初始化权重矩阵。
-
np.random.randn(a,b)* 0.01
来随机初始化一个维度为(a,b)的矩阵。
将偏向量初始化为零。
- np.zeros((a,b))
用零初始化矩阵(a,b)。
def initialize_parameters( n_x , n_h ,n_y):
""" 参数: n_x - 输入层节点的数量 n_h - 隐藏层节点的数量 n_y - 输出层节点的数量 返回: parameters - 包含参数的字典: W1 - 权重矩阵,维度为(n_h,n_x) b1 - 偏向量,维度为(n_h,1) W2 - 权重矩阵,维度为(n_y,n_h) b2 - 偏向量,维度为(n_y,1) """
np.random.seed(2) #指定一个随机种子,以便你的输出与我们的一样。
W1 = np.random.randn(n_h,n_x) * 0.01
b1 = np.zeros(shape=(n_h, 1))
W2 = np.random.randn(n_y,n_h) * 0.01
b2 = np.zeros(shape=(n_y, 1))
#使用断言确保我的数据格式是正确的
assert(W1.shape == ( n_h , n_x ))
assert(b1.shape == ( n_h , 1 ))
assert(W2.shape == ( n_y , n_h ))
assert(b2.shape == ( n_y , 1 ))
parameters = {"W1" : W1,
"b1" : b1,
"W2" : W2,
"b2" : b2 }
return parameters
测试一下我们的代码:
#测试initialize_parameters
print("=========================测试initialize_parameters=========================")
n_x , n_h , n_y = initialize_parameters_test_case()
parameters = initialize_parameters(n_x , n_h , n_y)
print("W1 = " + str(parameters["W1"]))
print("b1 = " + str(parameters["b1"]))
print("W2 = " + str(parameters["W2"]))
print("b2 = " + str(parameters["b2"]))
结果如下:
=========================测试initialize_parameters=========================
W1 = [[-0.00416758 -0.00056267]
[-0.02136196 0.01640271]
[-0.01793436 -0.00841747]
[ 0.00502881 -0.01245288]]
b1 = [[ 0.]
[ 0.]
[ 0.]
[ 0.]]
W2 = [[-0.01057952 -0.00909008 0.00551454 0.02292208]]
b2 = [[ 0.]]
循环
前向传播
我们现在要实现前向传播函数forward_propagation()。
我们可以使用sigmoid()函数,也可以使用np.tanh()函数。
步骤如下:
- 使用字典类型的parameters(它是initialize_parameters() 的输出)检索每个参数。
- 实现向前传播, 计算 和 ( 训练集里面所有例子的预测向量)。
- 反向传播所需的值存储在“cache”中,cache将作为反向传播函数的输入。
def forward_propagation( X , parameters ):
""" 参数: X - 维度为(n_x,m)的输入数据。 parameters - 初始化函数(initialize_parameters)的输出 返回: A2 - 使用sigmoid()函数计算的第二次激活后的数值 cache - 包含“Z1”,“A1”,“Z2”和“A2”的字典类型变量 """
W1 = parameters["W1"]
b1 = parameters["b1"]
W2 = parameters["W2"]
b2 = parameters["b2"]
#前向传播计算A2
Z1 = np.dot(W1 , X) + b1
A1 = np.tanh(Z1)
Z2 = np.dot(W2 , A1) + b2
A2 = sigmoid(Z2)
#使用断言确保我的数据格式是正确的
assert(A2.shape == (1,X.shape[1]))
cache = {"Z1": Z1,
"A1": A1,
"Z2": Z2,
"A2": A2}
return (A2, cache)
测试一下我的这个功能:
#测试forward_propagation
print("=========================测试forward_propagation=========================")
X_assess, parameters = forward_propagation_test_case()
A2, cache = forward_propagation(X_assess, parameters)
print(np.mean(cache["Z1"]), np.mean(cache["A1"]), np.mean(cache["Z2"]), np.mean(cache["A2"]))
测试结果如下:
=========================测试forward_propagation=========================
-0.000499755777742 -0.000496963353232 0.000438187450959 0.500109546852
现在我们已经计算了 , 包含了训练集里每个数值,现在我们就可以构建成本函数了。
计算损失
计算成本的公式如下:
有很多的方法都可以计算交叉熵损失,比如下面的这个公式,我们在python中可以这么实现:
:
logprobs = np.multiply(np.log(A2),Y)
cost = - np.sum(logprobs) # 不需要使用循环就可以直接算出来。
当然,你也可以使用np.multiply()
然后使用np.sum()
或者直接使用np.dot()
现在我们正式开始构建计算成本的函数:
def compute_cost(A2,Y,parameters):
""" 计算方程(6)中给出的交叉熵成本, 参数: A2 - 使用sigmoid()函数计算的第二次激活后的数值 Y - "True"标签向量,维度为(1,数量) parameters - 一个包含W1,B1,W2和B2的字典类型的变量 返回: 成本 - 交叉熵成本给出方程(13) """
m = Y.shape[1]
W1 = parameters["W1"]
W2 = parameters["W2"]
#计算成本
logprobs = logprobs = np.multiply(np.log(A2), Y) + np.multiply((1 - Y), np.log(1 - A2))
cost = - np.sum(logprobs) / m
cost = float(np.squeeze(cost))
assert(isinstance(cost,float))
return cost
测试一下我们的成本函数:
#测试compute_cost
print("=========================测试compute_cost=========================")
A2 , Y_assess , parameters = compute_cost_test_case()
print("cost = " + str(compute_cost(A2,Y_assess,parameters)))
测试结果如下:
=========================测试compute_cost=========================
cost = 0.6929198937761266
使用正向传播期间计算的cache,现在可以利用它实现反向传播。
现在我们要开始实现函数backward_propagation()。
向后传播
说明:反向传播通常是深度学习中最难(数学意义)部分,为了帮助你,这里有反向传播讲座的幻灯片, 由于我们正在构建向量化实现,因此我们将需要使用这下面的六个方程:
为了计算dZ1,里需要计算
,
是tanh激活函数,如果
那么
。所以我们需要使用 (1 - np.power(A1, 2))
来计算
。
def backward_propagation(parameters,cache,X,Y):
""" 使用上述说明搭建反向传播函数。 参数: parameters - 包含我们的参数的一个字典类型的变量。 cache - 包含“Z1”,“A1”,“Z2”和“A2”的字典类型的变量。 X - 输入数据,维度为(2,数量) Y - “True”标签,维度为(1,数量) 返回: grads - 包含W和b的导数一个字典类型的变量。 """
m = X.shape[1]
W1 = parameters["W1"]
W2 = parameters["W2"]
A1 = cache["A1"]
A2 = cache["A2"]
dZ2= A2 - Y
dW2 = (1 / m) * np.dot(dZ2, A1.T)
db2 = (1 / m) * np.sum(dZ2, axis=1, keepdims=True)
dZ1 = np.multiply(np.dot(W2.T, dZ2), 1 - np.power(A1, 2))
dW1 = (1 / m) * np.dot(dZ1, X.T)
db1 = (1 / m) * np.sum(dZ1, axis=1, keepdims=True)
grads = {"dW1": dW1,
"db1": db1,
"dW2": dW2,
"db2": db2 }
return grads
测试一下反向传播函数:
#测试backward_propagation
print("=========================测试backward_propagation=========================")
parameters, cache, X_assess, Y_assess = backward_propagation_test_case()
grads = backward_propagation(parameters, cache, X_assess, Y_assess)
print ("dW1 = "+ str(grads["dW1"]))
print ("db1 = "+ str(grads["db1"]))
print ("dW2 = "+ str(grads["dW2"]))
print ("db2 = "+ str(grads["db2"]))
测试结果如下:
=========================测试backward_propagation=========================
dW1 = [[ 0.01018708 -0.00708701]
[ 0.00873447 -0.0060768 ]
[-0.00530847 0.00369379]
[-0.02206365 0.01535126]]
db1 = [[-0.00069728]
[-0.00060606]
[ 0.000364 ]
[ 0.00151207]]
dW2 = [[ 0.00363613 0.03153604 0.01162914 -0.01318316]]
db2 = [[ 0.06589489]]
反向传播完成了,我们开始对参数进行更新
更新参数
我们需要使用(dW1, db1, dW2, db2)来更新(W1, b1, W2, b2)。
更新算法如下:
- :学习速率
- :参数
我们需要选择一个良好的学习速率,我们可以看一下下面这两个图(由Adam Harley提供):
上面两个图分别代表了具有良好学习速率(收敛)和不良学习速率(发散)的梯度下降算法。
def update_parameters(parameters,grads,learning_rate=1.2):
""" 使用上面给出的梯度下降更新规则更新参数 参数: parameters - 包含参数的字典类型的变量。 grads - 包含导数值的字典类型的变量。 learning_rate - 学习速率 返回: parameters - 包含更新参数的字典类型的变量。 """
W1,W2 = parameters["W1"],parameters["W2"]
b1,b2 = parameters["b1"],parameters["b2"]
dW1,dW2 = grads["dW1"],grads["dW2"]
db1,db2 = grads["db1"],grads["db2"]
W1 = W1 - learning_rate * dW1
b1 = b1 - learning_rate * db1
W2 = W2 - learning_rate * dW2
b2 = b2 - learning_rate * db2
parameters = {"W1": W1,
"b1": b1,
"W2": W2,
"b2": b2}
return parameters
测试一下update_parameters():
#测试update_parameters
print("=========================测试update_parameters=========================")
parameters, grads = update_parameters_test_case()
parameters = update_parameters(parameters, grads)
print("W1 = " + str(parameters["W1"]))
print("b1 = " + str(parameters["b1"]))
print("W2 = " + str(parameters["W2"]))
print("b2 = " + str(parameters["b2"]))
测试结果如下:
=========================测试update_parameters=========================
W1 = [[-0.00643025 0.01936718]
[-0.02410458 0.03978052]
[-0.01653973 -0.02096177]
[ 0.01046864 -0.05990141]]
b1 = [[ -1.02420756e-06]
[ 1.27373948e-05]
[ 8.32996807e-07]
[ -3.20136836e-06]]
W2 = [[-0.01041081 -0.04463285 0.01758031 0.04747113]]
b2 = [[ 0.00010457]]
整合
我们现在把上面的东西整合到nn_model()中,神经网络模型必须以正确的顺序使用先前的功能。
def nn_model(X,Y,n_h,num_iterations,print_cost=False):
""" 参数: X - 数据集,维度为(2,示例数) Y - 标签,维度为(1,示例数) n_h - 隐藏层的数量 num_iterations - 梯度下降循环中的迭代次数 print_cost - 如果为True,则每1000次迭代打印一次成本数值 返回: parameters - 模型学习的参数,它们可以用来进行预测。 """
np.random.seed(3) #指定随机种子
n_x = layer_sizes(X, Y)[0]
n_y = layer_sizes(X, Y)[2]
parameters = initialize_parameters(n_x,n_h,n_y)
W1 = parameters["W1"]
b1 = parameters["b1"]
W2 = parameters["W2"]
b2 = parameters["b2"]
for i in range(num_iterations):
A2 , cache = forward_propagation(X,parameters)
cost = compute_cost(A2,Y,parameters)
grads = backward_propagation(parameters,cache,X,Y)
parameters = update_parameters(parameters,grads,learning_rate = 0.5)
if print_cost:
if i%1000 == 0:
print("第 ",i," 次循环,成本为:"+str(cost))
return parameters
测试nn_model():
#测试nn_model
print("=========================测试nn_model=========================")
X_assess, Y_assess = nn_model_test_case()
parameters = nn_model(X_assess, Y_assess, 4, num_iterations=10000, print_cost=False)
print("W1 = " + str(parameters["W1"]))
print("b1 = " + str(parameters["b1"]))
print("W2 = " + str(parameters["W2"]))
print("b2 = " + str(parameters["b2"]))
测试结果如下:
=========================测试nn_model=========================
W1 = [[-4.18494482 5.33220319]
[-7.52989354 1.24306197]
[-4.19295428 5.32631786]
[ 7.52983748 -1.24309404]]
b1 = [[ 2.32926815]
[ 3.7945905 ]
[ 2.33002544]
[-3.79468791]]
W2 = [[-6033.83672179 -6008.12981272 -6033.10095329 6008.06636901]]
b2 = [[-52.66607704]]
参数更新完了我们就可以来进行预测了。
预测
构建predict()来使用模型进行预测, 使用向前传播来预测结果。
predictions =
def predict(parameters,X):
""" 使用学习的参数,为X中的每个示例预测一个类 参数: parameters - 包含参数的字典类型的变量。 X - 输入数据(n_x,m) 返回 predictions - 我们模型预测的向量(红色:0 /蓝色:1) """
A2 , cache = forward_propagation(X,parameters)
predictions = np.round(A2)
return predictions
测试一下predict
#测试predict
print("=========================测试predict=========================")
parameters, X_assess = predict_test_case()
predictions = predict(parameters, X_assess)
print("预测的平均值 = " + str(np.mean(predictions)))
测试结果:
=========================测试predict=========================
预测的平均值 = 0.666666666667
现在我们把所有的东西基本都做完了,我们开始正式运行。
正式运行
parameters = nn_model(X, Y, n_h = 4, num_iterations=10000, print_cost=True)
#绘制边界
plot_decision_boundary(lambda x: predict(parameters, x.T), X, Y)
plt.title("Decision Boundary for hidden layer size " + str(4))
predictions = predict(parameters, X)
print ('准确率: %d' % float((np.dot(Y, predictions.T) + np.dot(1 - Y, 1 - predictions.T)) / float(Y.size) * 100) + '%')
运行结果:
第 0 次循环,成本为:0.6930480201239823
第 1000 次循环,成本为:0.28808329356901835
第 2000 次循环,成本为:0.25438549407324496
第 3000 次循环,成本为:0.23386415038952196
第 4000 次循环,成本为:0.22679248744854008
第 5000 次循环,成本为:0.22264427549299015
第 6000 次循环,成本为:0.21973140404281316
第 7000 次循环,成本为:0.21750365405131294
第 8000 次循环,成本为:0.21950396469467315
第 9000 次循环,成本为:0.2185709575018246
准确率: 90%
更改隐藏层节点数量
我们上面的实验把隐藏层定为4个节点,现在我们更改隐藏层里面的节点数量,看一看节点数量是否会对结果造成影响。
plt.figure(figsize=(16, 32))
hidden_layer_sizes = [1, 2, 3, 4, 5, 20, 50] #隐藏层数量
for i, n_h in enumerate(hidden_layer_sizes):
plt.subplot(5, 2, i + 1)
plt.title('Hidden Layer of size %d' % n_h)
parameters = nn_model(X, Y, n_h, num_iterations=5000)
plot_decision_boundary(lambda x: predict(parameters, x.T), X, Y)
predictions = predict(parameters, X)
accuracy = float((np.dot(Y, predictions.T) + np.dot(1 - Y, 1 - predictions.T)) / float(Y.size) * 100)
print ("隐藏层的节点数量: {} ,准确率: {} %".format(n_h, accuracy))
打印结果:
隐藏层的节点数量: 1 ,准确率: 67.5 %
隐藏层的节点数量: 2 ,准确率: 67.25 %
隐藏层的节点数量: 3 ,准确率: 90.75 %
隐藏层的节点数量: 4 ,准确率: 90.5 %
隐藏层的节点数量: 5 ,准确率: 91.25 %
隐藏层的节点数量: 20 ,准确率: 90.0 %
隐藏层的节点数量: 50 ,准确率: 90.75 %
较大的模型(具有更多隐藏单元)能够更好地适应训练集,直到最终的最大模型过度拟合数据。
最好的隐藏层大小似乎在n_h = 5附近。实际上,这里的值似乎很适合数据,而且不会引起过度拟合。
我们还将在后面学习有关正则化的知识,它允许我们使用非常大的模型(如n_h = 50),而不会出现太多过度拟合。
【可选】探索
- 当改变sigmoid激活或ReLU激活的tanh激活时会发生什么?
- 改变learning_rate的数值会发生什么
- 如果我们改变数据集呢?
# 数据集
noisy_circles, noisy_moons, blobs, gaussian_quantiles, no_structure = load_extra_datasets()
datasets = {"noisy_circles": noisy_circles,
"noisy_moons": noisy_moons,
"blobs": blobs,
"gaussian_quantiles": gaussian_quantiles}
dataset = "noisy_moons"
X, Y = datasets[dataset]
X, Y = X.T, Y.reshape(1, Y.shape[0])
if dataset == "blobs":
Y = Y % 2
plt.scatter(X[0, :], X[1, :], c=Y, s=40, cmap=plt.cm.Spectral);
完整代码
作业代码
# -*- coding: utf-8 -*-
""" 本文博客地址:https://blog.csdn.net/u013733326/article/details/79702148 @author: Oscar """
import numpy as np
import matplotlib.pyplot as plt
from testCases import *
import sklearn
import sklearn.datasets
import sklearn.linear_model
from planar_utils import plot_decision_boundary, sigmoid, load_planar_dataset, load_extra_datasets
#%matplotlib inline #如果你使用用的是Jupyter Notebook的话请取消注释。
np.random.seed(1) #设置一个固定的随机种子,以保证接下来的步骤中我们的结果是一致的。
X, Y = load_planar_dataset()
#plt.scatter(X[0, :], X[1, :], c=Y, s=40, cmap=plt.cm.Spectral) #绘制散点图
shape_X = X.shape
shape_Y = Y.shape
m = Y.shape[1] # 训练集里面的数量
print ("X的维度为: " + str(shape_X))
print ("Y的维度为: " + str(shape_Y))
print ("数据集里面的数据有:" + str(m) + " 个")
def layer_sizes(X , Y):
""" 参数: X - 输入数据集,维度为(输入的数量,训练/测试的数量) Y - 标签,维度为(输出的数量,训练/测试数量) 返回: n_x - 输入层的数量 n_h - 隐藏层的数量 n_y - 输出层的数量 """
n_x = X.shape[0] #输入层
n_h = 4 #,隐藏层,硬编码为4
n_y = Y.shape[0] #输出层
return (n_x,n_h,n_y)
def initialize_parameters( n_x , n_h ,n_y):
""" 参数: n_x - 输入节点的数量 n_h - 隐藏层节点的数量 n_y - 输出层节点的数量 返回: parameters - 包含参数的字典: W1 - 权重矩阵,维度为(n_h,n_x) b1 - 偏向量,维度为(n_h,1) W2 - 权重矩阵,维度为(n_y,n_h) b2 - 偏向量,维度为(n_y,1) """
np.random.seed(2) #指定一个随机种子,以便你的输出与我们的一样。
W1 = np.random.randn(n_h,n_x) * 0.01
b1 = np.zeros(shape=(n_h, 1))
W2 = np.random.randn(n_y,n_h) * 0.01
b2 = np.zeros(shape=(n_y, 1))
#使用断言确保我的数据格式是正确的
assert(W1.shape == ( n_h , n_x ))
assert(b1.shape == ( n_h , 1 ))
assert(W2.shape == ( n_y , n_h ))
assert(b2.shape == ( n_y , 1 ))
parameters = {"W1" : W1,
"b1" : b1,
"W2" : W2,
"b2" : b2 }
return parameters
def forward_propagation( X , parameters ):
""" 参数: X - 维度为(n_x,m)的输入数据。 parameters - 初始化函数(initialize_parameters)的输出 返回: A2 - 使用sigmoid()函数计算的第二次激活后的数值 cache - 包含“Z1”,“A1”,“Z2”和“A2”的字典类型变量 """
W1 = parameters["W1"]
b1 = parameters["b1"]
W2 = parameters["W2"]
b2 = parameters["b2"]
#前向传播计算A2
Z1 = np.dot(W1 , X) + b1
A1 = np.tanh(Z1)
Z2 = np.dot(W2 , A1) + b2
A2 = sigmoid(Z2)
#使用断言确保我的数据格式是正确的
assert(A2.shape == (1,X.shape[1]))
cache = {"Z1": Z1,
"A1": A1,
"Z2": Z2,
"A2": A2}
return (A2, cache)
def compute_cost(A2,Y,parameters):
""" 计算方程(6)中给出的交叉熵成本, 参数: A2 - 使用sigmoid()函数计算的第二次激活后的数值 Y - "True"标签向量,维度为(1,数量) parameters - 一个包含W1,B1,W2和B2的字典类型的变量 返回: 成本 - 交叉熵成本给出方程(13) """
m = Y.shape[1]
W1 = parameters["W1"]
W2 = parameters["W2"]
#计算成本
logprobs = logprobs = np.multiply(np.log(A2), Y) + np.multiply((1 - Y), np.log(1 - A2))
cost = - np.sum(logprobs) / m
cost = float(np.squeeze(cost))
assert(isinstance(cost,float))
return cost
def backward_propagation(parameters,cache,X,Y):
""" 使用上述说明搭建反向传播函数。 参数: parameters - 包含我们的参数的一个字典类型的变量。 cache - 包含“Z1”,“A1”,“Z2”和“A2”的字典类型的变量。 X - 输入数据,维度为(2,数量) Y - “True”标签,维度为(1,数量) 返回: grads - 包含W和b的导数一个字典类型的变量。 """
m = X.shape[1]
W1 = parameters["W1"]
W2 = parameters["W2"]
A1 = cache["A1"]
A2 = cache["A2"]
dZ2= A2 - Y
dW2 = (1 / m) * np.dot(dZ2, A1.T)
db2 = (1 / m) * np.sum(dZ2, axis=1, keepdims=True)
dZ1 = np.multiply(np.dot(W2.T, dZ2), 1 - np.power(A1, 2))
dW1 = (1 / m) * np.dot(dZ1, X.T)
db1 = (1 / m) * np.sum(dZ1, axis=1, keepdims=True)
grads = {"dW1": dW1,
"db1": db1,
"dW2": dW2,
"db2": db2 }
return grads
def update_parameters(parameters,grads,learning_rate=1.2):
""" 使用上面给出的梯度下降更新规则更新参数 参数: parameters - 包含参数的字典类型的变量。 grads - 包含导数值的字典类型的变量。 learning_rate - 学习速率 返回: parameters - 包含更新参数的字典类型的变量。 """
W1,W2 = parameters["W1"],parameters["W2"]
b1,b2 = parameters["b1"],parameters["b2"]
dW1,dW2 = grads["dW1"],grads["dW2"]
db1,db2 = grads["db1"],grads["db2"]
W1 = W1 - learning_rate * dW1
b1 = b1 - learning_rate * db1
W2 = W2 - learning_rate * dW2
b2 = b2 - learning_rate * db2
parameters = {"W1": W1,
"b1": b1,
"W2": W2,
"b2": b2}
return parameters
def nn_model(X,Y,n_h,num_iterations,print_cost=False):
""" 参数: X - 数据集,维度为(2,示例数) Y - 标签,维度为(1,示例数) n_h - 隐藏层的数量 num_iterations - 梯度下降循环中的迭代次数 print_cost - 如果为True,则每1000次迭代打印一次成本数值 返回: parameters - 模型学习的参数,它们可以用来进行预测。 """
np.random.seed(3) #指定随机种子
n_x = layer_sizes(X, Y)[0]
n_y = layer_sizes(X, Y)[2]
parameters = initialize_parameters(n_x,n_h,n_y)
W1 = parameters["W1"]
b1 = parameters["b1"]
W2 = parameters["W2"]
b2 = parameters["b2"]
for i in range(num_iterations):
A2 , cache = forward_propagation(X,parameters)
cost = compute_cost(A2,Y,parameters)
grads = backward_propagation(parameters,cache,X,Y)
parameters = update_parameters(parameters,grads,learning_rate = 0.5)
if print_cost:
if i%1000 == 0:
print("第 ",i," 次循环,成本为:"+str(cost))
return parameters
def predict(parameters,X):
""" 使用学习的参数,为X中的每个示例预测一个类 参数: parameters - 包含参数的字典类型的变量。 X - 输入数据(n_x,m) 返回 predictions - 我们模型预测的向量(红色:0 /蓝色:1) """
A2 , cache = forward_propagation(X,parameters)
predictions = np.round(A2)
return predictions
parameters = nn_model(X, Y, n_h = 4, num_iterations=10000, print_cost=True)
#绘制边界
plot_decision_boundary(lambda x: predict(parameters, x.T), X, Y)
plt.title("Decision Boundary for hidden layer size " + str(4))
predictions = predict(parameters, X)
print ('准确率: %d' % float((np.dot(Y, predictions.T) + np.dot(1 - Y, 1 - predictions.T)) / float(Y.size) * 100) + '%')
""" plt.figure(figsize=(16, 32)) hidden_layer_sizes = [1, 2, 3, 4, 5, 20, 50] #隐藏层数量 for i, n_h in enumerate(hidden_layer_sizes): plt.subplot(5, 2, i + 1) plt.title('Hidden Layer of size %d' % n_h) parameters = nn_model(X, Y, n_h, num_iterations=5000) plot_decision_boundary(lambda x: predict(parameters, x.T), X, Y) predictions = predict(parameters, X) accuracy = float((np.dot(Y, predictions.T) + np.dot(1 - Y, 1 - predictions.T)) / float(Y.size) * 100) print ("隐藏层的节点数量: {} ,准确率: {} %".format(n_h, accuracy)) """
testCases.py
#-*- coding: UTF-8 -*-
""" # WANGZHE12 """
import numpy as np
def layer_sizes_test_case():
np.random.seed(1)
X_assess = np.random.randn(5, 3)
Y_assess = np.random.randn(2, 3)
return X_assess, Y_assess
def initialize_parameters_test_case():
n_x, n_h, n_y = 2, 4, 1
return n_x, n_h, n_y
def forward_propagation_test_case():
np.random.seed(1)
X_assess = np.random.randn(2, 3)
parameters = {'W1': np.array([[-0.00416758, -0.00056267],
[-0.02136196, 0.01640271],
[-0.01793436, -0.00841747],
[ 0.00502881, -0.01245288]]),
'W2': np.array([[-0.01057952, -0.00909008, 0.00551454, 0.02292208]]),
'b1': np.array([[ 0.],
[ 0.],
[ 0.],
[ 0.]]),
'b2': np.array([[ 0.]])}
return X_assess, parameters
def compute_cost_test_case():
np.random.seed(1)
Y_assess = np.random.randn(1, 3)
parameters = {'W1': np.array([[-0.00416758, -0.00056267],
[-0.02136196, 0.01640271],
[-0.01793436, -0.00841747],
[ 0.00502881, -0.01245288]]),
'W2': np.array([[-0.01057952, -0.00909008, 0.00551454, 0.02292208]]),
'b1': np.array([[ 0.],
[ 0.],
[ 0.],
[ 0.]]),
'b2': np.array([[ 0.]])}
a2 = (np.array([[ 0.5002307 , 0.49985831, 0.50023963]]))
return a2, Y_assess, parameters
def backward_propagation_test_case():
np.random.seed(1)
X_assess = np.random.randn(2, 3)
Y_assess = np.random.randn(1, 3)
parameters = {'W1': np.array([[-0.00416758, -0.00056267],
[-0.02136196, 0.01640271],
[-0.01793436, -0.00841747],
[ 0.00502881, -0.01245288]]),
'W2': np.array([[-0.01057952, -0.00909008, 0.00551454, 0.02292208]]),
'b1': np.array([[ 0.],
[ 0.],
[ 0.],
[ 0.]]),
'b2': np.array([[ 0.]])}
cache = {'A1': np.array([[-0.00616578, 0.0020626 , 0.00349619],
[-0.05225116, 0.02725659, -0.02646251],
[-0.02009721, 0.0036869 , 0.02883756],
[ 0.02152675, -0.01385234, 0.02599885]]),
'A2': np.array([[ 0.5002307 , 0.49985831, 0.50023963]]),
'Z1': np.array([[-0.00616586, 0.0020626 , 0.0034962 ],
[-0.05229879, 0.02726335, -0.02646869],
[-0.02009991, 0.00368692, 0.02884556],
[ 0.02153007, -0.01385322, 0.02600471]]),
'Z2': np.array([[ 0.00092281, -0.00056678, 0.00095853]])}
return parameters, cache, X_assess, Y_assess
def update_parameters_test_case():
parameters = {'W1': np.array([[-0.00615039, 0.0169021 ],
[-0.02311792, 0.03137121],
[-0.0169217 , -0.01752545],
[ 0.00935436, -0.05018221]]),
'W2': np.array([[-0.0104319 , -0.04019007, 0.01607211, 0.04440255]]),
'b1': np.array([[ -8.97523455e-07],
[ 8.15562092e-06],
[ 6.04810633e-07],
[ -2.54560700e-06]]),
'b2': np.array([[ 9.14954378e-05]])}
grads = {'dW1': np.array([[ 0.00023322, -0.00205423],
[ 0.00082222, -0.00700776],
[-0.00031831, 0.0028636 ],
[-0.00092857, 0.00809933]]),
'dW2': np.array([[ -1.75740039e-05, 3.70231337e-03, -1.25683095e-03,
-2.55715317e-03]]),
'db1': np.array([[ 1.05570087e-07],
[ -3.81814487e-06],
[ -1.90155145e-07],
[ 5.46467802e-07]]),
'db2': np.array([[ -1.08923140e-05]])}
return parameters, grads
def nn_model_test_case():
np.random.seed(1)
X_assess = np.random.randn(2, 3)
Y_assess = np.random.randn(1, 3)
return X_assess, Y_assess
def predict_test_case():
np.random.seed(1)
X_assess = np.random.randn(2, 3)
parameters = {'W1': np.array([[-0.00615039, 0.0169021 ],
[-0.02311792, 0.03137121],
[-0.0169217 , -0.01752545],
[ 0.00935436, -0.05018221]]),
'W2': np.array([[-0.0104319 , -0.04019007, 0.01607211, 0.04440255]]),
'b1': np.array([[ -8.97523455e-07],
[ 8.15562092e-06],
[ 6.04810633e-07],
[ -2.54560700e-06]]),
'b2': np.array([[ 9.14954378e-05]])}
return parameters, X_assess
planar_utils.py
import matplotlib.pyplot as plt
import numpy as np
import sklearn
import sklearn.datasets
import sklearn.linear_model
def plot_decision_boundary(model, X, y):
# Set min and max values and give it some padding
x_min, x_max = X[0, :].min() - 1, X[0, :].max() + 1
y_min, y_max = X[1, :].min() - 1, X[1, :].max() + 1
h = 0.01
# Generate a grid of points with distance h between them
xx, yy = np.meshgrid(np.arange(x_min, x_max, h), np.arange(y_min, y_max, h))
# Predict the function value for the whole grid
Z = model(np.c_[xx.ravel(), yy.ravel()])
Z = Z.reshape(xx.shape)
# Plot the contour and training examples
plt.contourf(xx, yy, Z, cmap=plt.cm.Spectral)
plt.ylabel('x2')
plt.xlabel('x1')
plt.scatter(X[0, :], X[1, :], c=y, cmap=plt.cm.Spectral)
def sigmoid(x):
s = 1/(1+np.exp(-x))
return s
def load_planar_dataset():
np.random.seed(1)
m = 400 # number of examples
N = int(m/2) # number of points per class
D = 2 # dimensionality
X = np.zeros((m,D)) # data matrix where each row is a single example
Y = np.zeros((m,1), dtype='uint8') # labels vector (0 for red, 1 for blue)
a = 4 # maximum ray of the flower
for j in range(2):
ix = range(N*j,N*(j+1))
t = np.linspace(j*3.12,(j+1)*3.12,N) + np.random.randn(N)*0.2 # theta
r = a*np.sin(4*t) + np.random.randn(N)*0.2 # radius
X[ix] = np.c_[r*np.sin(t), r*np.cos(t)]
Y[ix] = j
X = X.T
Y = Y.T
return X, Y
def load_extra_datasets():
N = 200
noisy_circles = sklearn.datasets.make_circles(n_samples=N, factor=.5, noise=.3)
noisy_moons = sklearn.datasets.make_moons(n_samples=N, noise=.2)
blobs = sklearn.datasets.make_blobs(n_samples=N, random_state=5, n_features=2, centers=6)
gaussian_quantiles = sklearn.datasets.make_gaussian_quantiles(mean=None, cov=0.5, n_samples=N, n_features=2, n_classes=2, shuffle=True, random_state=None)
no_structure = np.random.rand(N, 2), np.random.rand(N, 2)
return noisy_circles, noisy_moons, blobs, gaussian_quantiles, no_structure