神经网络1_neuron network原理_python sklearn建模乳腺癌细胞分类器(推荐AAA)

时间:2022-07-27 20:07:19

python机器学习-乳腺癌细胞挖掘(博主亲自录制视频)

https://study.163.com/course/introduction.htm?courseId=1005269003&utm_campaign=commission&utm_source=cp-400000000398149&utm_medium=share

神经网络1_neuron network原理_python sklearn建模乳腺癌细胞分类器(推荐AAA)

author: Toby,项目合作QQ:231469242

https://www.youtube.com/watch?v=lAaCeiqE6CE&list=PLXO45tsB95cJ0U2DKySDmhRqQI9IaGxck

人工神经网络 VS 生物神经网络

两者是不一样的

生物神经网络是大自然经过千亿年进化而成,目前最先进人工智能神经网络无法达到

人工神经网络 :通过正反馈和负反馈创建或删除神经元

生物神经网络  :通过刺激产生新的链接,信号通过新的链接传递产生反馈,

目前最先进人工智能神经网络无法模拟生物神经网络

神经网络1_neuron network原理_python sklearn建模乳腺癌细胞分类器(推荐AAA)

卷积神经网络 CNN (深度学习)应用:

图片识别,语音识别,药物发现

神经网络1_neuron network原理_python sklearn建模乳腺癌细胞分类器(推荐AAA)

神经网络原理:hidden layer是通过函数传递值

神经网络1_neuron network原理_python sklearn建模乳腺癌细胞分类器(推荐AAA)

了解神经网络,必须了解线性代数

神经网络1_neuron network原理_python sklearn建模乳腺癌细胞分类器(推荐AAA)

神经网络1_neuron network原理_python sklearn建模乳腺癌细胞分类器(推荐AAA)

神经网络对数字识别是一层层分解

神经网络1_neuron network原理_python sklearn建模乳腺癌细胞分类器(推荐AAA)

https://blog.csdn.net/gamer_gyt/article/details/51255448

scikit-learn博主使用的是0.17版本,是稳定版,当然现在有0.18发行版,两者还是有区别的,感兴趣的可以自己官网上查看

scikit-learn0.17(and 之前)上对于Neural Network算法 的支持仅限于 BernoulliRBM

scikit-learn0.18上对于Neural Network算法有三个  neural_network.BernoulliRBM ,neural_network.MLPClassifier,neural_network.MLPRgression

Multi-layer Perceptron 多层感知机

MLP是一个监督学习算法,图1是带一个隐藏层的MLP模型 
神经网络1_neuron network原理_python sklearn建模乳腺癌细胞分类器(推荐AAA)

具体可参考:点击阅读

1:神经网络算法简介

2:Backpropagation算法详细介绍

3:非线性转化方程举例

4:自己实现神经网络算法NeuralNetwork

5:基于NeuralNetwork的XOR实例

6:基于NeuralNetwork的手写数字识别实例

7:scikit-learn中BernoulliRBM使用实例

8:scikit-learn中的手写数字识别实例

一:神经网络算法简介

1:背景

以人脑神经网络为启发,历史上出现过很多版本,但最著名的是backpropagation

2:多层向前神经网络(Multilayer  Feed-Forward Neural Network)

神经网络1_neuron network原理_python sklearn建模乳腺癌细胞分类器(推荐AAA)

多层向前神经网络组成部分

输入层(input layer),隐藏层(hiddenlayer),输出层(output layer)

   每层由单元(units)组成
   输入层(input layer)是由训练集的实例特征向量传入
   经过连接结点的权重(weight)传入下一层,一层的输出是下一层的输入
   隐藏层的个数是任意的,输出层和输入层只有一个
   每个单元(unit)也可以被称作神经结点,根据生物学来源定义
   上图称为2层的神经网络(输入层不算)
   一层中加权的求和,然后根据非线性的方程转化输出
   作为多层向前神经网络,理论上,如果有足够多的隐藏层(hidden layers)和足够大的训练集,可以模拟出任何方程
 

3:设计神经网络结构

    3.1使用神经网络训练数据之前,必须确定神经网络层数,以及每层单元个数
    3.2特征向量在被传入输入层时通常被先标准化(normalize)和0和1之间(为了加强学习过程)
    3.3离散型变量可以被编码成每一个输入单元对应一个特征可能赋的值
        比如:特征值A可能取三个值(a0,a1,a2),可以使用三个输入单元来代表A
                    如果A=a0,那么代表a0的单元值就取1,其他取0
                    如果A=a1,那么代表a1的单元值就取1,其他取0,以此类推
    3.4神经网络即可以用来做分类(classification)问题,也可以解决回归(regression)问题
         3.4.1对于分类问题,如果是2类,可以用一个输入单元表示(0和1分别代表2类)
                                         如果多于两类,每一个类别用一个输出单元表示
                所以输入层的单元数量通常等于类别的数量 
        3.4.2没有明确的规则来设计最好有多少个隐藏层
               3.4.2.1根据实验测试和误差,以及准确度来实验并改进

4:算法验证——交叉验证法(Cross- Validation)

 

神经网络1_neuron network原理_python sklearn建模乳腺癌细胞分类器(推荐AAA)

神经网络优点和缺点

优点:大数据高效,处理复杂模型,处理多维度数据,灵活快速

缺点:数据需要预处理

代替:TensorFlow,Keras

神经网络1_neuron network原理_python sklearn建模乳腺癌细胞分类器(推荐AAA)

python sklearn建模处理乳腺癌细胞分类器

# -*- coding: utf-8 -*-
"""
Created on Sun Apr 1 11:49:50 2018 @author: Toby,项目合作QQ:231469242
神经网络
"""
#Multi-layer Perceptron 多层感知机
from sklearn.neural_network import MLPClassifier
#标准化数据,否则神经网络结果不准确,和SVM类似
from sklearn.preprocessing import StandardScaler
from sklearn.datasets import load_breast_cancer
from sklearn.model_selection import train_test_split
import mglearn
import matplotlib.pyplot as plt
mglearn.plots.plot_logistic_regression_graph()
mglearn.plots.plot_single_hidden_layer_graph() cancer=load_breast_cancer()
x_train,x_test,y_train,y_test=train_test_split(cancer.data,cancer.target,stratify=cancer.target,random_state=42) mlp=MLPClassifier(random_state=42)
mlp.fit(x_train,y_train)
print("neural network:")
print("accuracy on the training subset:{:.3f}".format(mlp.score(x_train,y_train)))
print("accuracy on the test subset:{:.3f}".format(mlp.score(x_test,y_test))) scaler=StandardScaler()
x_train_scaled=scaler.fit(x_train).transform(x_train)
x_test_scaled=scaler.fit(x_test).transform(x_test) mlp_scaled=MLPClassifier(max_iter=1000,random_state=42)
mlp_scaled.fit(x_train_scaled,y_train)
print("neural network after scaled:")
print("accuracy on the training subset:{:.3f}".format(mlp_scaled.score(x_train_scaled,y_train)))
print("accuracy on the test subset:{:.3f}".format(mlp_scaled.score(x_test_scaled,y_test))) mlp_scaled2=MLPClassifier(max_iter=1000,alpha=1,random_state=42)
mlp_scaled.fit(x_train_scaled,y_train)
print("neural network after scaled and alpha change to 1:")
print("accuracy on the training subset:{:.3f}".format(mlp_scaled.score(x_train_scaled,y_train)))
print("accuracy on the test subset:{:.3f}".format(mlp_scaled.score(x_test_scaled,y_test))) plt.figure(figsize=(20,5))
plt.imshow(mlp.coefs_[0],interpolation="None",cmap="GnBu")
plt.yticks(range(30),cancer.feature_names)
plt.xlabel("columns in weight matrix")
plt.ylabel("input feature")
plt.colorbar()

  

神经网络1_neuron network原理_python sklearn建模乳腺癌细胞分类器(推荐AAA)

神经网络1_neuron network原理_python sklearn建模乳腺癌细胞分类器(推荐AAA)

神经网络1_neuron network原理_python sklearn建模乳腺癌细胞分类器(推荐AAA)

python信用评分卡建模(附代码,博主录制)

神经网络1_neuron network原理_python sklearn建模乳腺癌细胞分类器(推荐AAA)