Opencv--形态学图像处理--膨胀与腐蚀,开操作与闭操作

时间:2022-02-03 20:02:55

参考了http://www.tuicool.com/articles/ua22Uf
http://www.cnblogs.com/tiandsp/archive/2013/04/20/3032763.html

一、理论与概念讲解——从现象到本质
1.1 形态学概述

形态学(morphology)一词通常表示生物学的一个分支,该分支主要研究动植物的形态和结构。而我们图像处理中指的形态学,往往表示的是数学形态学。下面一起来了解数学形态学的概念。

数学形态学(Mathematical morphology) 是一门建立在格论和拓扑学基础之上的图像分析学科,是数学形态学图像处理的基本理论。其基本的运算包括:二值腐蚀和膨胀、二值开闭运算、骨架抽取、极限腐蚀、击中击不中变换、形态学梯度、Top-hat变换、颗粒分析、流域变换、灰值腐蚀和膨胀、灰值开闭运算、灰值形态学梯度等。

简单来讲,形态学操作就是基于形状的一系列图像处理操作。OpenCV为进行图像的形态学变换提供了快捷、方便的函数。最基本的形态学操作有二种,他们是:膨胀与腐蚀(Dilation与Erosion)。

膨胀与腐蚀能实现多种多样的功能,主要如下:

  • 消除噪声
  • 分割(isolate)出独立的图像元素,在图像中连接(join)相邻的元素。
  • 寻找图像中的明显的极大值区域或极小值区域
  • 求出图像的梯度

我们在这里给出下文会用到的,用于对比膨胀与腐蚀运算的“浅墨”字样毛笔字原图:
Opencv--形态学图像处理--膨胀与腐蚀,开操作与闭操作
在进行腐蚀和膨胀的讲解之前,首先需要注意,腐蚀和膨胀是对白色部分(高亮部分)而言的,不是黑色部分。膨胀就是图像中的高亮部分进行膨胀,“领域扩张”,效果图拥有比原图更大的高亮区域。腐蚀就是原图中的高亮部分被腐蚀,“领域被蚕食”,效果图拥有比原图更小的高亮区域。
1.2 膨胀

其实,膨胀就是求局部最大值的操作。

按数学方面来说,膨胀或者腐蚀操作就是将图像(或图像的一部分区域,我们称之为A)与核(我们称之为B)进行卷积。

核可以是任何的形状和大小,它拥有一个单独定义出来的参考点,我们称其为锚点(anchorpoint)。多数情况下,核是一个小的中间带有参考点和实心正方形或者圆盘,其实,我们可以把核视为模板或者掩码。

而膨胀就是求局部最大值的操作,核B与图形卷积,即计算核B覆盖的区域的像素点的最大值,并把这个最大值赋值给参考点指定的像素。这样就会使图像中的高亮区域逐渐增长。如下图所示,这就是膨胀操作的初衷。
Opencv--形态学图像处理--膨胀与腐蚀,开操作与闭操作
膨胀的数学表达式
Opencv--形态学图像处理--膨胀与腐蚀,开操作与闭操作
膨胀效果图(毛笔字):
Opencv--形态学图像处理--膨胀与腐蚀,开操作与闭操作
1.3 腐蚀

再来看一下腐蚀,大家应该知道,膨胀和腐蚀是一对好基友,是相反的一对操作,所以腐蚀就是求局部最小值的操作。

我们一般都会把腐蚀和膨胀对应起来理解和学习。下文就可以看到,两者的函数原型也是基本上一样的。

原理图:
Opencv--形态学图像处理--膨胀与腐蚀,开操作与闭操作
腐蚀的数学表达式:
Opencv--形态学图像处理--膨胀与腐蚀,开操作与闭操作
腐蚀效果图(毛笔字):
Opencv--形态学图像处理--膨胀与腐蚀,开操作与闭操作
三、浅出——API函数快速上手
3.1 形态学膨胀——dilate函数

erode函数,使用像素邻域内的局部极大运算符来膨胀一张图片,从src输入,由dst输出。支持就地(in-place)操作。

函数原型:

C++: void dilate(
InputArray src,
OutputArray dst,
InputArray kernel,
Point anchor=Point(-1,-1),
int iterations=1,
int borderType=BORDER_CONSTANT,
const Scalar& borderValue=morphologyDefaultBorderValue()
);

参数详解:

  • 第一个参数,InputArray类型的src,输入图像,即源图像,填Mat类的对象即可。图像通道的数量可以是任意的,但图像深度为CV_8U,CV_16U,CV_16S,CV_32F或
    CV_64F其中之一。
  • 第二个参数,OutputArray类型的dst,即目标图像,需要和源图片有一样的尺寸和类型。
  • 第三个参数,InputArray类型的kernel,膨胀操作的核。若为NULL时,表示的是使用参考点位于中心3x3的核。

我们一般使用函数 getStructuringElement配合这个参数的使用。getStructuringElement函数会返回指定形状和尺寸的结构元素(内核矩阵)。

其中,getStructuringElement函数的第一个参数表示内核的形状,我们可以选择如下三种形状之一:

    矩形: MORPH_RECT
交叉形: MORPH_CROSS
椭圆形: MORPH_ELLIPSE

而getStructuringElement函数的第二和第三个参数分别是内核的尺寸以及锚点的位置。

我们一般在调用erode以及dilate函数之前,先定义一个Mat类型的变量来获得getStructuringElement函数的返回值。对于锚点的位置,有默认值Point(-1,-1),表示锚点位于中心。且需要注意,十字形的element形状唯一依赖于锚点的位置。而在其他情况下,锚点只是影响了形态学运算结果的偏移。

getStructuringElement函数相关的调用示例代码如下:

int g_nStructElementSize = 3; //结构元素(内核矩阵)的尺寸

//获取自定义核
Mat element = getStructuringElement(MORPH_RECT,
Size(2*g_nStructElementSize+1,2*g_nStructElementSize+1),
Point( g_nStructElementSize, g_nStructElementSize ));

调用这样之后,我们便可以在接下来调用erode或dilate函数时,第三个参数填保存了getStructuringElement返回值的Mat类型变量。对应于我们上面的示例,就是填element变量。

  • 第四个参数,Point类型的anchor,锚的位置,其有默认值(-1,-1),表示锚位于中心。
  • 第五个参数,int类型的iterations,迭代使用erode()函数的次数,默认值为1。
  • 第六个参数,int类型的borderType,用于推断图像外部像素的某种边界模式。注意它有默认值BORDER_DEFAULT。
  • 第七个参数,const
    Scalar&类型的borderValue,当边界为常数时的边界值,有默认值morphologyDefaultBorderValue(),一般我们不用去管他。需要用到它时,可以看官方文档中的createMorphologyFilter()函数得到更详细的解释。

使用dilate函数,一般我们只需要填前面的三个参数,后面的四个参数都有默认值。而且往往结合getStructuringElement一起使用。

调用范例:

//载入原图 
Mat image = imread("1.jpg");
//获取自定义核
Mat element = getStructuringElement(MORPH_RECT, Size(15, 15));
Mat out;
//进行膨胀操作
dilate(image, out, element);

3.2 形态学腐蚀——erode函数

erode函数,使用像素邻域内的局部极小运算符来腐蚀一张图片,从src输入,由dst输出。支持就地(in-place)操作。

看一下函数原型:

C++: void erode(
InputArray src,
OutputArray dst,
InputArray kernel,
Point anchor=Point(-1,-1),
int iterations=1,
int borderType=BORDER_CONSTANT,
const Scalar& borderValue=morphologyDefaultBorderValue()
);

数详解:

  • 第一个参数,InputArray类型的src,输入图像,即源图像,填Mat类的对象即可。图像通道的数量可以是任意的,但图像深度应为CV_8U,CV_16U,CV_16S,CV_32F或
    CV_64F其中之一。
  • 第二个参数,OutputArray类型的dst,即目标图像,需要和源图片有一样的尺寸和类型。
  • 第三个参数,InputArray类型的kernel,腐蚀操作的内核。若为NULL时,表示的是使用参考点位于中心3x3的核。我们一般使用函数
    getStructuringElement配合这个参数的使用。getStructuringElement函数会返回指定形状和尺寸的结构元素(内核矩阵)。(具体看上文中浅出部分dilate函数的第三个参数讲解部分)
  • 第四个参数,Point类型的anchor,锚的位置,其有默认值(-1,-1),表示锚位于单位(element)的中心,我们一般不用管它。
  • 第五个参数,int类型的iterations,迭代使用erode()函数的次数,默认值为1。
  • 第六个参数,int类型的borderType,用于推断图像外部像素的某种边界模式。注意它有默认值BORDER_DEFAULT。
  • 第七个参数,const
    Scalar&类型的borderValue,当边界为常数时的边界值,有默认值morphologyDefaultBorderValue(),一般我们不用去管他。需要用到它时,可以看官方文档中的createMorphologyFilter()函数得到更详细的解释。

同样的,使用erode函数,一般我们只需要填前面的三个参数,后面的四个参数都有默认值。而且往往结合getStructuringElement一起使用。

调用范例:

//载入原图 
Mat image = imread("1.jpg");
//获取自定义核
Mat element = getStructuringElement(MORPH_RECT, Size(15, 15));
Mat out;
//进行腐蚀操作
erode(image,out, element);

3.3开操作与闭操作

        //输入图像
//输出图像
//定义操作:MORPH_OPEN为开操作,MORPH_CLOSE为闭操作
//单元大小,这里是3*3的8位单元
//开闭操作位置
//开闭操作次数
morphologyEx(src,dst,MORPH_OPEN,Mat(3,3,CV_8U),Point(-1,-1),1);
imwrite("open.jpg",dst);

morphologyEx(src,dst,MORPH_CLOSE,Mat(3,3,CV_8U),Point(-1,-1),1);
imwrite("close.jpg",dst);