Number Sequence
Time Limit: 2000/1000 MS (Java/Others) Memory Limit: 65536/32768 K (Java/Others)Total Submission(s): 129366 Accepted Submission(s): 31498
Problem Description A number sequence is defined as follows:
f(1) = 1, f(2) = 1, f(n) = (A * f(n - 1) + B * f(n - 2)) mod 7.
Given A, B, and n, you are to calculate the value of f(n).
Input The input consists of multiple test cases. Each test case contains 3 integers A, B and n on a single line (1 <= A, B <= 1000, 1 <= n <= 100,000,000). Three zeros signal the end of input and this test case is not to be processed.
Output For each test case, print the value of f(n) on a single line.
Sample Input
1 1 3
1 2 10
0 0 0
Sample Output
2
5
题目大意:
f(1)=f(2)=1,f(n)=(A*f(n-1)+B*f(n-2))%7,输入A,B和n,输出f(n)。解题思路:
1 <= n <= 100,000,000,所以不能从3循环到n计算f(n)。f(3)=a+b,f(4)=a+ab+b^2,观察可以发现
所以每次只需要计算的(n-2)次方。
其实斐波那契数列也属于这种数列,只是a=1,b=1。
参考代码:
#include<bits/stdc++.h>
using namespace std;
const int INF=0x3f3f3f3f;
const int MAXN=1e6+50;
struct matrix
{
int a[2][2];
matrix()
{
memset(a,0,sizeof(a));
}
};
matrix multi(matrix x,matrix y)
{
matrix ans;
for(int i=0; i<2; i++)
for(int j=0; j<2; j++)
for(int k=0; k<2; k++)
ans.a[i][j]=(ans.a[i][j]+x.a[i][k]*y.a[k][j])%7;
return ans;
}
int fastmod(matrix base,int n,int mod)
{
matrix ans=base;
ans.a[0][0]=ans.a[1][1]=1;
ans.a[0][1]=ans.a[1][0]=0;
while(n)
{
if(n&1)
ans=multi(ans,base);
base=multi(base,base);
n>>=1;
}
return (ans.a[0][0]+ans.a[0][1])%mod;
}
int main()
{
#ifndef ONLINE_JUDGE
freopen("in.txt","r",stdin);
#endif // ONLINE_JUDGE
int x,y,n;
while(scanf("%d%d%d",&x,&y,&n)&&!(x==0&&y==0&&n==0))
{
if(n==1||n==2)
{
printf("1\n");
continue;
}
matrix t;
t.a[0][0]=x;
t.a[0][1]=y;
t.a[1][0]=1;
t.a[1][1]=0;
printf("%d\n",fastmod(t,n-2,7));
}
return 0;
}