Description
除法表达式有如下的形式: X1/X2/X3.../Xk 其中Xi是正整数且Xi<=1000000000(1<=i<=k,K<=10000) 除法表达式应当按照从左到右的顺序求,例如表达式1/2/1/2的值为1/4.但可以在表达式中国入括号来改变计算顺序,例如(1/2)/(1/2)的值为1.现给出一个除法表达式E,求是告诉是否可以通过增加括号来使其为E',E'为整数
Input
先给出一个数字D,代表有D组数据. 每组数据先给出一个数字N,代表这组数据将有N个数。 接下来有N个数,分别代表X1,X2,X3,...,XN
Output
如果能使得表达式的值为一个整数,则输出YES.否则为NO
Sample Input
2
4
1
2
1
2
3
1
2
3
4
1
2
1
2
3
1
2
3
Sample Output
YES
NO
NO
HINT
Source
Solution
第一个数必为分子,第二个数必为分母,剩下的数既可以是分子又可以是分母,所以当表达式形如$X_1/(X_2/X_3/\cdots/X_N)$时最有可能是整数
判断$X_2$能否被其他数的积整除即可(你不会傻到把这些数乘起来吧)
#include <bits/stdc++.h>
using namespace std;
int a[]; int gcd(int x, int y)
{
return y ? gcd(y, x % y) : x;
} int main()
{
int d, n, t;
scanf("%d", &d);
while(d--)
{
scanf("%d", &n);
for(int i = ; i <= n; ++i)
scanf("%d", a + i);
if(n == )
{
puts("YES");
continue;
}
swap(a[], a[]);
for(int i = ; i <= n && a[] > ; ++i)
t = gcd(a[i], a[]), a[] /= t;
if(a[] == ) puts("YES");
else puts("NO");
}
return ;
}