题目:
Given a triangle, find the minimum path sum from top to bottom. Each step you may move to adjacent numbers on the row below.
For example, given the following triangle
[
[2],
[3,4],
[6,5,7],
[4,1,8,3]
]
The minimum path sum from top to bottom is 11
(i.e., 2 + 3 + 5 + 1 = 11).
Note:
Bonus point if you are able to do this using only O(n) extra space, where n is the total number of rows in the triangle.
思路:
1) 递归,代码很简单,但超时了
package recursion; import java.util.ArrayList;
import java.util.List; public class Triangle { public int minimumTotal(List<List<Integer>> triangle) {
int m = triangle.size();
return minPath(triangle, , , m, );
} private int minPath(List<List<Integer>> triangle, int row, int col, int m, int prevTotal) {
if (row >= m) return prevTotal;
prevTotal += triangle.get(row).get(col);
return Math.min(minPath(triangle, row + , col, m, prevTotal), minPath(triangle, row + , col + , m, prevTotal));
} }
2) 从下往上进行扫描
package recursion; import java.util.ArrayList;
import java.util.List; public class Triangle { public int minimumTotal(List<List<Integer>> triangle) {
int m = triangle.size();
int n = triangle.get(m - 1).size();
int[] res = new int[n + 1];
for (int i = m - 1; i >= 0; --i) {
for (int j = 0; j < triangle.get(i).size(); ++j) {
res[j] = Math.min(res[j], res[j + 1]) + triangle.get(i).get(j);
}
}
return res[0];
} }