题目:
Given inorder and postorder traversal of a tree, construct the binary tree.
Note:
You may assume that duplicates do not exist in the tree.
题解:
这道题跟pre+in一样的方法做,只不过找左子树右子树的位置不同而已。
/ \ / \ / \ 对于上图的树来说,
index: 0 1 2 3 4 5 6
中序遍历为: 4 2 5 1 6 3 7
后续遍历为: 4 5 2 6 7 3
为了清晰表示,我给节点上了颜色,红色是根节点,蓝色为左子树,绿色为右子树。
可以发现的规律是:
1. 中序遍历中根节点是左子树右子树的分割点。
2. 后续遍历的最后一个节点为根节点。 同样根据中序遍历找到根节点的位置,然后顺势计算出左子树串的长度。在后序遍历中分割出左子树串和右子树串,递归的建立左子树和右子树。
public TreeNode buildTree(int[] inorder, int[] postorder) {
return buildTree(inorder, 0, inorder.length-1, postorder, 0, postorder.length-1);
}
public TreeNode buildTree(int[] in, int inStart, int inEnd, int[] post, int postStart, int postEnd){
if(inStart > inEnd || postStart > postEnd){
return null;
}
int rootVal = post[postEnd];
int rootIndex = 0;
for(int i = inStart; i <= inEnd; i++){
if(in[i] == rootVal){
rootIndex = i;
break;
}
}
int len = rootIndex - inStart;
TreeNode root = new TreeNode(rootVal);
root.left = buildTree(in, inStart, rootIndex-1, post, postStart, postStart+len-1);
root.right = buildTree(in, rootIndex+1, inEnd, post, postStart+len, postEnd-1);
return root;
}