Pick The Sticks
Time Limit: 15000/10000 MS (Java/Others) Memory Limit: 65535/65535 K (Java/Others)
Total Submission(s): 593 Accepted Submission(s): 193
Xiu Yang, one of the cleverest counselors of Cao Cao, understood the command Rather than keep it to himself, he told the point to the whole army. Cao Cao got very angry at his cleverness and would like to punish Xiu Yang. But how can you punish someone because he's clever? By looking at the chicken rib, he finally got a new idea to punish Xiu Yang.
He told Xiu Yang that as his reward of encrypting the special order, he could take as many gold sticks as possible from his desk. But he could only use one stick as the container.
Formally, we can treat the container stick as an L length segment. And the gold sticks as segments too. There were many gold sticks with different length ai and value vi. Xiu Yang needed to put these gold segments onto the container segment. No gold segment was allowed to be overlapped. Luckily, Xiu Yang came up with a good idea. On the two sides of the container, he could make part of the gold sticks outside the container as long as the center of the gravity of each gold stick was still within the container. This could help him get more valuable gold sticks.
As a result, Xiu Yang took too many gold sticks which made Cao Cao much more angry. Cao Cao killed Xiu Yang before he made himself home. So no one knows how many gold sticks Xiu Yang made it in the container.
Can you help solve the mystery by finding out what's the maximum value of the gold sticks Xiu Yang could have taken?
3 7
4 1
2 1
8 1
3 7
4 2
2 1
8 4
3 5
4 1
2 2
8 9
1 1
10 3
Case #2: 6
Case #3: 11
Case #4: 3
In the third case, assume the container is lay on x-axis from 0 to 5. Xiu Yang could put the second gold stick center at 0 and put the third gold stick center at 5,
so none of them will drop and he can get total 2+9=11 value.
In the fourth case, Xiu Yang could just put the only gold stick center on any position of [0,1], and he can get the value of 3.
#include<cstdio>
#include<cstring>
#include<algorithm>
#include<iostream>
using namespace std; typedef long long LL; const int maxn = ;
const int maxV = ; LL f[][maxV][];
int v[maxn], w[maxn];
int n, V;
void solve() {
scanf("%d%d", &n, &V); LL res = ;
for (int i = ; i < n; ++ i) {
scanf("%d%d", &v[i], &w[i]);
v[i] <<= ; res = max(res, (LL)w[i]);
}
V <<= ; int p = ; memset(f, , sizeof f);
for (int i = ; i < n; ++ i) {
p = p ^ ;
for (int j = V; j >= ; -- j) {
for (int k = ; k >= ; -- k) {
f[p][j][k] = f[p^][j][k];
if (j >= v[i]) f[p][j][k] = max(f[p][j][k], f[p^][j-v[i]][k] + w[i]);
if (k >= && j >= v[i]/) f[p][j][k] = max(f[p][j][k], f[p^][j-v[i]/][k-] + w[i]);
}
}
}
res = max(res, max(max(f[p][V][], f[p][V][]), f[p][V][]));
printf("%I64d\n", res);
} int main() {
// freopen("D.in", "r", stdin); int kase, i = ; scanf("%d", &kase);
while (kase --) {
printf("Case #%d: ", ++ i);
solve();
}
return ;
}