Problem Description
Ignatius is poor at math,he falls across a puzzle problem,so he has no choice but to appeal to Eddy. this problem describes that:f(x)=5*x^13+13*x^5+k*a*x,input a nonegative integer k(k<10000),to find the minimal nonegative integer a,make the arbitrary integer x ,65|f(x)if
no exists that a,then print “no”.
Input
The input contains several test cases. Each test case consists of a nonegative integer k, More details in the Sample Input.
Output
The output contains a string “no”,if you can’t find a,or you should output a line contains the a.More details in the Sample Output.
Sample Input
11
100
9999
Sample Output
22
no
43
题目大意:方程f(x)=5*x^13+13*x^5+k*a*x;输入任意一个数k,是否存在一个数a,对任意x都能使得f(x)能被65整除。
现假设存在这个数a ,因为对于任意x方程都成立
所以,当x=1时f(x)=18+ka
又因为f(x)能被65整出,故设n为整数
可得,f(x)=n*65;
即:18+ka=n*65;
因为n为整数,若要方程成立
则问题转化为,
对于给定范围的a只需要验证,
是否存在一个a使得(18+k*a)%65==0
所以容易解得
注意,这里有童鞋不理解为什么a只需到65即可
因为,当a==66时
也就相当于已经找了一个周期了,所以再找下去也找不到适当的a了
import java.util.Scanner;
public class Main {
public static void main(String[] args) {
Scanner sc = new Scanner(System.in);
while(sc.hasNext()){
int k= sc.nextInt();
boolean flag=false;
for(int a=0;a<=65;a++){
if((18+k*a)%65==0){
System.out.println(a);
flag = true;
break;
}
}
if(!flag){
System.out.println("no");
}
}
}
}