【BZOJ2212】[POI2011]Tree Rotations (线段树合并)

时间:2023-01-14 19:15:58

题解:

傻逼题

启发式合并线段树里面查$nlog^2$

线段树合并顺便维护一下$nlogn$

注意是叶子为n 总结点2n

代码:

#include <bits/stdc++.h>
using namespace std;
#define rint register int
#define IL inline
#define rep(i,h,t) for(int i=h;i<=t;i++)
#define dep(i,t,h) for(int i=t;i>=h;i--)
#define ll long long
#define me(x) memset(x,0,sizeof(x))
#define mep(x,y) memcpy(x,y,sizeof(y))
#define mid (t<=0?(h+t-1)/2:(h+t)/2)
namespace IO{
char ss[<<],*A=ss,*B=ss;
IL char gc()
{
return A==B&&(B=(A=ss)+fread(ss,,<<,stdin),A==B)?EOF:*A++;
}
template<class T> void read(T &x)
{
rint f=,c; while (c=gc(),c<||c>) if (c=='-') f=-; x=(c^);
while (c=gc(),c>&&c<) x=(x<<)+(x<<)+(c^); x*=f;
}
char sr[<<],z[]; int Z,C1=-;
template<class T>void wer(T x)
{
if (x<) sr[++C1]='-',x=-x;
while (z[++Z]=x%+,x/=);
while (sr[++C1]=z[Z],--Z);
}
IL void wer1()
{
sr[++C1]=' ';
}
IL void wer2()
{
sr[++C1]='\n';
}
template<class T>IL void maxa(T &x,T y) {if (x<y) x=y;}
template<class T>IL void mina(T &x,T y) {if (x>y) x=y;}
template<class T>IL T MAX(T x,T y){return x>y?x:y;}
template<class T>IL T MIN(T x,T y){return x<y?x:y;}
};
using namespace IO;
const int N1=4.1e5;
const int N2=7e6;
int ch[N1][],node,v[N1],rt[N1],n;
ll ans,cnt1,cnt2;
int gettree()
{
int x,u=++node;read(x);
if(!x)ch[u][]=gettree(),ch[u][]=gettree();
else v[u]=x;
return u;
}
struct sgt{
int sum[N2],ls[N2],rs[N2],cnt;
void insert(int &x,int h,int t,int pos)
{
x=++cnt; sum[x]=;
if (h==t) return;
if (pos<=mid) insert(ls[x],h,mid,pos);
else insert(rs[x],mid+,t,pos);
}
int merge(int x,int y)
{
if (!x||!y) return x^y;
sum[x]+=sum[y];
cnt1+=1ll*sum[ls[x]]*sum[rs[y]];
cnt2+=1ll*sum[rs[x]]*sum[ls[y]];
ls[x]=merge(ls[x],ls[y]);
rs[x]=merge(rs[x],rs[y]);
return x;
}
}S;
void dfs(int x)
{
if (v[x])
{
S.insert(rt[x],,n,v[x]); return;
}
dfs(ch[x][]);
dfs(ch[x][]);
cnt1=,cnt2=;
rt[x]=S.merge(rt[ch[x][]],rt[ch[x][]]);
ans+=MIN(cnt1,cnt2);
}
int main()
{
freopen("1.in","r",stdin);
freopen("1.out","w",stdout);
read(n); gettree();
dfs();
cout<<ans<<endl;
return ;
}