三分法求极值

时间:2022-11-24 19:07:02


二分法用来解决单调函数的极值问题,而三分法用来解决凸函数的极值问题。

所以在使用三分的时候要注意函数具有凹凸性

模板:

double cal()
{
	//.....具体计算根据题目要求实现
	return 0.0;
}

void solve()
{
	double left,right,mid1,mid2,ans,flg1,flg2;

	left=0.0;right=1000.0;
	while(right-left>eps)
	{
		mid1=(2*left+right)/3;
		mid2=(left+2*right)/3;
		flg1=cal();//具体实现
		flg2=cal();
		if(flg1>flg2)
			right=mid2;
		else
			left=mid1;
	}
	ans=cal();//left
}
 
 
 

例题:

hdu 3400

题意:平面上有两条线段AB和CD,在AB上行走的速度为P,CD上行走的速度为Q,其他区域行走的速度为R,问从A走到D的最短时间。

//============================================================================
// Name        : hdu3400三分.cpp
// Author      : xinge008
// Version     :
// Copyright   : Your copyright notice
// Description : Hello World in C++, Ansi-style
//============================================================================
#include <iostream>
#include <cstring>
#include <cstdio>
#include <cmath>
#include <algorithm>
#include <string>
using namespace std;
const double eps=1e-12;
double P,Q,R;
struct Node{
	double x,y;
};
Node A,B,C,D;

Node dist(Node n1,Node n2)
{
	Node ans;
	ans.x=(n1.x+n2.x)/2;
	ans.y=(n1.y+n2.y)/2;
	return ans;
}

double cal(Node n1,Node n2)
{
	double t1=(n1.x-n2.x)*(n1.x-n2.x);
	double t2=(n1.y-n2.y)*(n1.y-n2.y);
	return sqrt(t1+t2);
}

double run1(Node da)
{
	Node left=C,right=D;
	double max=100,min=0;
//	double max=cal(left,right)/Q,min=0;
	while(fabs(max-min)>eps)
	{
		Node mid1=dist(left,right);
		Node mid2=dist(mid1,right);
		min=cal(mid1,da)/R+cal(mid1,D)/Q;
		max=cal(mid2,da)/R+cal(mid2,D)/Q;
		if(min<=max)
			right=mid2;
		else
			left=mid1;
	}
	return	max;
}

double run2()
{
	Node left=A,right=B;
	double max=100,min=0;
//	double min=0,max=cal(A,B)/P;
	while(fabs(max-min)>eps)
	{
		Node mid1=dist(left,right);
		Node mid2=dist(mid1,right);
		min=cal(mid1,A)/P+run1(mid1);
		max=cal(mid2,A)/P+run1(mid2);
		if(min<=max)
			right=mid2;
		else
			left=mid1;
	}
	return max;
}

void gao()
{
	int T;
	scanf("%d",&T);
	while(T--)
	{
		scanf("%lf%lf%lf%lf",&A.x,&A.y,&B.x,&B.y);
		scanf("%lf%lf%lf%lf",&C.x,&C.y,&D.x,&D.y);
		scanf("%lf%lf%lf",&P,&Q,&R);
		printf("%.2lf\n",run2());
	}
}

int main() {
	gao();
	return 0;
}


HDU3714

题意:函数F[x]=max{Si(x)}  (i=0,1,2,3,...,n)    其中Si(x)为二次函数, 求函数F[X]的最小值。

//============================================================================
// Name        : 三分.cpp
// Author      : xinge008
// Version     :
// Copyright   : Your copyright notice
// Description : Hello World in C++, Ansi-style
//============================================================================
#include <iostream>
#include <cstring>
#include <string>
#include <cmath>
#include <algorithm>
#include <cstdio>
using namespace std;
const int maxn=10010;
const double eps = 1e-12;
struct node{
	double a,b,c;
}data[maxn];

double _Max(double a,double b)
{
	if(a>b)
		return a;
	return b;
}

double cal1(int i,double da)
{
	return data[i].a*da*da+data[i].b*da+data[i].c;
}

double cal2(double x,int n)
{
	double ans=-1e10;
	for(int i=1;i<=n;i++)
		ans=_Max(ans,cal1(i,x));
	return ans;
}

void cal(int n)
{
	double left,right,ans,mid1,mid2;
	left=0;right=1000.0;
	while(right-left>eps)
	{
		//在此是高精度的要求
		mid1=(2*left+right)/3;
		mid2=(left+2*right)/3;
		double flg1=cal2(mid1,n);
		double flg2=cal2(mid2,n);
		if(flg1>flg2)
		{
			left=mid1;
		}else
		{
			right=mid2;
		}
	}
	ans=cal2(left,n);
	printf("%.4lf\n",ans);
}


int main() {
	int T;
	scanf("%d",&T);
	while(T--)
	{
		int num;
		scanf("%d",&num);
		for(int i=1;i<=num;i++)
		{
			scanf("%lf%lf%lf",&data[i].a,&data[i].b,&data[i].c);
		}
		cal(num);
	}
	return 0;
}