# -*- coding: utf-8 -*- ''' Created on 2018年1月27日 @author: Jason.F @summary: 前馈神经网络激励函数-双曲正切(hyperbolic tangent,tanh)函数,经过缩放的逻辑斯蒂函数,输出值的范围更广,在开区间(-1,1),有利于加速反向传播算法的收敛 ''' import numpy as np import time import matplotlib.pyplot as plt if __name__ == "__main__": start = time.clock() def tanh(z): e_p = np.exp(z) e_m = np.exp(-z) return (e_p -e_m)/(e_m+e_p) def net_input(X,w): z=X.dot(w) return z def logistic(z): return 1.0/(1.0+np.exp(-z)) #W:array,shape=[n_output_units,n_hidden_units+1],weight matrix for hidden layer --> output layer #note that first column (A[:][0]=1) are the bias units. W=np.array([[1.1,1.2,1.3,0.5],[0.1,0.2,0.4,0.1],[0.2,0.5,2.1,1.9]]) #A:array,shape=[n_hiddern+1,n_samples],Activation of hidden layer. #note that first element (A[0][0]=1) is the bias unit. A=np.array([[1.0],[0.1],[0.3],[0.7]]) #Z:array,shape=[n_output_units,n_samples],Net input of the output layer. Z=W.dot(A) y_probas = tanh(Z) print ('Probabilities:\n',y_probas) print (y_probas.sum()) y_class = np.argmax(Z,axis=0) print ('predicted class label:%d'%y_class[0]) #和逻辑斯蒂函数比较 z=np.arange(-5,5,0.005) log_act = logistic(z) tanh_act =tanh(z) plt.ylim([-1.5,1.5]) plt.xlabel('net input $z$') plt.ylabel('activation $\phi(z)$') plt.axhline(1,color='black',linestyle='--') plt.axhline(0.5,color='black',linestyle='--') plt.axhline(0,color='black',linestyle='--') plt.axhline(-1,color='black',linestyle='--') plt.plot(z,tanh_act,linewidth=2,color='black',label='tanh') plt.plot(z,log_act,linewidth=2,color='lightgreen',label='logistic') plt.legend(loc='lower right') plt.tight_layout() plt.show() end = time.clock() print('finish all in %s' % str(end - start))
结果:
('Probabilities:\n', array([[ 0.96108983], [ 0.3004371 ], [ 0.97621774]])) 2.23774466472 predicted class label:2 finish all in 14.5718582269