KMP算法 --- 深入理解next数组

时间:2022-12-11 18:51:07
 

在KMP算法中有个数组,叫做前缀数组,也有的叫next数组。

每一个子串有一个固定的next数组,它记录着字符串匹配过程中失配情况下可以向前多跳几个字符。

当然它描述的也是子串的对称程度,程度越高,值越大,当然之前可能出现再匹配的机会就更大。

这个next数组的求法是KMP算法的关键,但不是很好理解。这个篇文章仅贡献给不喜欢看数学公式又想理解KMP算法的同学。

1、用一个例子来解释,下面是一个子串的next数组的值,可以看到这个子串的对称程度很高,所以next值都比较大。

位置i

0

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

前缀next[i]

0

0

0

0

1

2

3

1

2

3

4

5

6

7

4

0

子串

a

g

c

t

a

g

c

a

g

c

t

a

g

c

t

g

申明一下:下面说的对称不是中心对称,而是中心字符块对称,比如不是abccba,而是abcabc这种对称。

(1)逐个查找对称串

这个很简单,我们只要循环遍历这个子串,分别看前1个字符,前2个字符,3个... i个 最后到15个。

第1个a无对称,所以对称程度0

前两个ag无对称,所以也是0

依次类推前面0-4都一样是0

前5个agcta,可以看到这个串有一个a相等,所以对称程度为1前6个agctag,看得到ag和ag对成,对称程度为2

这里要注意了,想是这样想,编程怎么实现呢?

只要按照下面的规则:

a、当前面字符的前一个字符的对称程度为0的时候,只要将当前字符与子串第一个字符进行比较。这个很好理解,前面都是0,说明都不对称了,如果多加了一个字符,要对称的话最多是当前的和第一个对称。比如agcta这个里面t的是0,那么后面的a的对称程度只需要看它是不是等于第一个字符a了。

 

b、按照这个推理,我们就可以总结一个规律,不仅前面是0,如果前面一个字符的next值是1,那么我们就把当前字符与子串第二个字符进行比较,因为前面的是1,说明前面的字符已经和第一个相等了,如果这个又与第二个相等了,说明对称程度就是2了。有两个字符对称了。比如上面agctag,倒数第二个a的next是1,说明它和第一个a对称了,接着我们就把最后一个g与第二个g比较,又相等,自然对称成都就累加了,就是2了。

 

c、按照上面的推理,如果一直相等,就一直累加,可以一直推啊,推到这里应该一点难度都没有吧,如果你觉得有难度说明我写的太失败了。

当然不可能会那么顺利让我们一直对称下去,如果遇到下一个不相等了,那么说明不能继承前面的对称性了,这种情况只能说明没有那么多对称了,但是不能说明一点对称性都没有,所以遇到这种情况就要重新来考虑,这个也是难点所在。

(2)回头来找对称性

这里已经不能继承前面了,但是还是找对称成都嘛,最愚蠢的做法大不了写一个子函数,查找这个字符串的最大对称程度,怎么写方法很多吧,比如查找出所有的当前字符串,然后向前走,看是否一直相等,最后走到子串开头,当然这个是最蠢的,我们一般看到的KMP都是优化过的,因为这个串是有规律的。

在这里依然用上面表中一段来举个例子:   

位置i=0到14如下,我加的括号只是用来说明问题:

(a g c t a g c )( a g c t a g c) t

我们可以看到这段,最后这个t之前的对称程度分别是:1,2,3,4,5,6,7,倒数第二个c往前看有7个字符对称,所以对称为7。但是到最后这个t就没有继承前面的对称程度next值,所以这个t的对称性就要重新来求。

这里首要要申明几个事实

1、t 如果要存在对称性,那么对称程度肯定比前面这个c 的对称程度小,所以要找个更小的对称,这个不用解释了吧,如果大那么t就继承前面的对称性了。

2、要找更小的对称,必然在对称内部还存在子对称,而且这个t必须紧接着在子对称之后。

如下图说明。

KMP算法 --- 深入理解next数组

 

KMP算法 --- 深入理解next数组

从上面的理论我们就能得到下面的前缀next数组的求解算法。

void getNext(const char *s, int Next[])

{
    Next[0]=0;
    int len=strlen(s);
    for(int i=1; i<len; i++)
    {
        int k=Next[i-1];
        //不断递归判断是否存在子对称,k=0说明不再有子对称,s[i] != s[k]说明虽然对称,但是对称后面的值和当前的字符值不相等,所以继续递推
        while( s[i] != s[k]  &&  k!=0 )              
            k=Next[k-1];     //继续递归
        if( s[i] == s[k])//找到了这个子对称,或者是直接继承了前面的对称性,这两种都在前面的基础上++
             Next[i]=k+1;
        else
             Next[i]=0;       //如果遍历了所有子对称都无效,说明这个新字符不具有对称性,清0
    }
}

通过这个说明,估计能够理解KMP的next求法原理了。