Description
― Wikipedia, the free encyclopedia
In this problem, you have to solve the 4-color problem. Hey, I’m just joking.
You are asked to solve a similar problem:
Color an N × M chessboard with K colors numbered from 1 to K such that no two adjacent cells have the same color (two cells are adjacent if they share an edge). The i-th color should be used in exactly c i cells.
Matt hopes you can tell him a possible coloring.
Input
For each test case, the first line contains three integers: N, M, K (0 < N, M ≤ 5, 0 < K ≤ N × M ).
The second line contains K integers c i (c i > 0), denoting the number of cells where the i-th color should be used.
It’s guaranteed that c 1 + c 2 + ・ ・ ・ + c K = N × M .
Output
In the second line, output “NO” if there is no coloring satisfying the requirements. Otherwise, output “YES” in one line. Each of the following N lines contains M numbers seperated by single whitespace, denoting the color of the cells.
If there are multiple solutions, output any of them.
Sample Input
4
1 5 2
4 1
3 3 4
1 2 2 4
2 3 3
2 2 2
3 2 3
2 2 2
Sample Output
Case #1:
NO
Case #2:
YES
4 3 4
2 1 2
4 3 4
Case #3:
YES
1 2 3
2 3 1
Case #4:
YES
1 2
2 3
3 1
这道题就是搜索,剪枝优化是如果当前未染色的点数为x,(x+1)/2<max(col[i]),就可以return了。
#include <algorithm>
#include <iostream>
#include <cstring>
#include <cstdio>
using namespace std;
const int N=;
int id[N][N],L[N*N],U[N*N],c[N*N];
int T,cas,n,m,k,map[N*N],p[N*N];
bool DFS(int x){
if(x==n*m+)return true;
for(int i=;i<=k;i++)
if((n*m+-x)/<c[i])return false;
for(int i=;i<=k;i++){
if(c[i]==)continue;
if(map[L[x]]!=i&&map[U[x]]!=i){
c[i]-=;map[x]=i;
if(DFS(x+))return true;
c[i]+=;map[x]=;
}
}
return false;
}
int main(){
scanf("%d",&T);
while(T--){int idx=;
scanf("%d%d%d",&n,&m,&k);
for(int i=;i<=k;i++)
scanf("%d",&c[i]);
for(int i=;i<=n;i++)
for(int j=;j<=m;j++)
id[i][j]=++idx;
for(int i=;i<=n;i++)
for(int j=;j<=m;j++){
L[id[i][j]]=id[i][j-];
U[id[i][j]]=id[i-][j];
}
printf("Case #%d:\n",++cas);
if(DFS()){
puts("YES");
for(int i=;i<=n;i++){
for(int j=;j<m;j++)
printf("%d ",map[(i-)*m+j]);
printf("%d\n",map[i*m]);
}
}
else puts("NO");
}
return ;
}