【BZOJ 3090】 树形DP

时间:2022-07-26 17:57:57

3090: Coci2009 [podjela]

Description

有 N 个农民, 他们住在 N 个不同的村子里. 这 N 个村子形成一棵树.
每个农民初始时获得 X 的钱.
每一次操作, 一个农民可以从它自己的钱中, 取出任意数量的钱, 交给某个相邻村子的农民.

对于每个农民给定一个值 v_i, 求
    (1) 最少需要多少次操作, 使得每个农民最终拿到的钱 >= 给定的值.

Input

第1行: 一个整数 N (1 <= N <= 2000)
    第2行: 一个整数 X (0 <= X <= 10000)
    第3行: N 个整数, 表示 v_i. 保证所有 v_i 的和 <= N * X
    第4..N+2行: 每行两个 1..N 的数, 表示树上的一条边. 边是双向的.

Output

第1行: 一个整数, 最少需要的操作次数

Sample Input

6
15
10 20 18 16 6 16
1 4
4 5
4 6
6 2
5 3

Sample Output

5

HINT

Source

【分析】

  之前做过很多次这种移来移去的题目了。

  如果有环的,我就做过BZOJ 1045 一道数学题。

  如果没环,目标值的和等于初始值的和,那么挺唯一的,直接for就好了。

  这题就是目标值的和小于等于初始值的和的,考虑DP。

  一开始的想法当然是f[x][y]表示x这个子树,然后y这个点的值,然后什么最小代价。

  但是爆空间超时啊,不如把f中的y和答案换一下位置,因为显然操作次数少于子树大小,

  f[x][y]表示x这棵子树在操作y次之后满足目标值,最少要x从父亲那里拿多少东西(若f的值小于0则表示不仅不用从父亲那里拿东西,还可以给-f[x][y]的东西给父亲)

  然后DP。

  这种要满足每个子树的题我真的是不太擅长,于是我最好的解决方案就是滚动一下了。

  还有要注意的是x<=n,y<=x,所以看似三重循环,实际是n^2的,这个是之前做树形依赖的题知道的,因为可以看成只会在LCA的时候for到那两个东西。

  

  大神的方法跟我的差不多然后讲的比我清楚:http://blog.csdn.net/visit_world/article/details/54297322

 #include<cstdio>
#include<cstdlib>
#include<cstring>
#include<iostream>
#include<algorithm>
using namespace std;
#define Maxn 2010
#define INF 0xfffffff int mymin(int x,int y) {return x<y?x:y;}
int mymax(int x,int y) {return x>y?x:y;} int w[Maxn],ww; struct node
{
int x,y,next;
}t[Maxn*];
int first[Maxn],len; void ins(int x,int y)
{
t[++len].x=x;t[len].y=y;
t[len].next=first[x];first[x]=len;
} int f[Maxn][Maxn],g[][Maxn],sm[Maxn]; void dfs(int x,int ff)
{
sm[x]=;
for(int i=first[x];i;i=t[i].next) if(t[i].y!=ff)
{
int y=t[i].y;
dfs(y,x);
sm[x]+=sm[y];
}
if(sm[x]!=)
{
int p=;
for(int j=;j<=sm[x];j++) g[][j]=;
for(int i=first[x];i;i=t[i].next) if(t[i].y!=ff)
{
int y=t[i].y;
for(int j=;j<=sm[x];j++) g[-p][j]=INF;
//j-k<=sm[x]-1-sm[y]
//k>=j-sm[x]+sm[y]+1
for(int j=;j<=sm[x];j++)
{
int st=mymax(j-sm[x]+sm[y]+,);
for(int k=st;k<=sm[y];k++)
{
if(k>j) break;//j-k>=0
if(f[y][k]>)
{
if(k>=) g[-p][j]=mymin(g[-p][j],g[p][j-k]+f[y][k-]);
}
else
{
if(k>=) g[-p][j]=mymin(g[-p][j],g[p][j-k]+f[y][k-]);//give father
if(k!=sm[y]) g[-p][j]=mymin(g[-p][j],g[p][j-k]);
}
}
}
p=-p;
}
for(int j=;j<sm[x];j++) f[x][j]=g[p][j];
}
for(int j=;j<sm[x];j++)
{
f[x][j]=f[x][j]+w[x]-ww;
// printf("f[%d][%d]=%d\n",x,j,f[x][j]);
}
} int main()
{
int n;
scanf("%d%d",&n,&ww);
len=;
memset(first,,sizeof(first));
for(int i=;i<=n;i++) scanf("%d",&w[i]);
for(int i=;i<n;i++)
{
int x,y;
scanf("%d%d",&x,&y);
ins(x,y);ins(y,x);
}
memset(f,,sizeof(f));
dfs(,);
for(int i=;i<sm[];i++) if(f[][i]<=) {printf("%d\n",i);break;}
return ;
}

2017-03-22 10:26:09