在drivers/i2c/busses下包含各种I2C总线驱动,如S3C2440的I2C总线驱动i2c-s3c2410.c,使用GPIO模拟I2C总线的驱动i2c-gpio.c,这里只分析i2c-gpio.c。
i2c-gpio.c它是gpio模拟I2C总线的驱动,总线也是个设备,在这里将总线当作平台设备处理,那驱动当然是平台设备驱动,看它的驱动注册和注销函数。
1. static int __init i2c_gpio_init(void) 2. { 3. int ret; 4. 5. ret = platform_driver_register(&i2c_gpio_driver); 6. if (ret) 7. printk(KERN_ERR "i2c-gpio: probe failed: %d\n", ret); 8. 9. return ret; 10. } 11. module_init(i2c_gpio_init); 12. 13. static void __exit i2c_gpio_exit(void) 14. { 15. platform_driver_unregister(&i2c_gpio_driver); 16. } 17. module_exit(i2c_gpio_exit);
没有什么好说的,它的初始化和注销函数就是注册和注销一个平台设备驱动,直接看它的platform_driver结构i2c_gpio_driver
1. static struct platform_driver i2c_gpio_driver = { 2. .driver = { 3. .name = "i2c-gpio", 4. .owner = THIS_MODULE, 5. }, 6. .probe = i2c_gpio_probe, 7. .remove = __devexit_p(i2c_gpio_remove), 8. };
平台驱动设备放在arch/arm/mach-xxxx/board-xxx.c中
1. #if defined(CONFIG_I2C_GPIO) | \ 2. defined(CONFIG_I2C_GPIO_MODULE) 3. static struct i2c_gpio_platform_data i2c_gpio_adapter_data = { 4. .sda_pin = PINID_GPMI_D05, 5. .scl_pin = PINID_GPMI_D04, 6. .udelay = 5, //100KHz 7. .timeout = 100, 8. .sda_is_open_drain = 1, 9. .scl_is_open_drain = 1, 10. }; 11. 12. static struct platform_device i2c_gpio = { 13. .name = "i2c-gpio", 14. .id = 0, 15. .dev = { 16. .platform_data = &i2c_gpio_adapter_data, 17. .release = mxs_nop_release, 18. }, 19. }; 20. #endif
在这里 struct platform_device结构中的 name字段要和 struct platform_driver中 driver字段中 name字段要相同,因为平台总线就是通过这个来判断设备和驱动是否匹配的。注意这里的 id将它赋值了 0,至于到底有什么用,后面再来细看。这个结构里面还包含一个最重要的数据 i2c_gpio_adapter_data,它 struct i2c_gpio_platform_data结构类型变量,这个结构体类型定义在 include/linux/i2c-gpio.h中。
1. struct i2c_gpio_platform_data { 2. unsigned int sda_pin; 3. unsigned int scl_pin; 4. int udelay; 5. int timeout; 6. unsigned int sda_is_open_drain:1; 7. unsigned int scl_is_open_drain:1; 8. unsigned int scl_is_output_only:1; 9. };
这个结构体主要描述gpio模拟i2c总线,sda_pin和scl_pin表示使用哪两个IO管脚来模拟I2C总线,udelay和timeout分别为它的时钟频率和超时时间,sda_is_open_drain和scl_is_open_drain表示sda、scl这两个管脚是否是开漏(opendrain)电路,如果是设置为1,scl_is_output_only表示scl这个管脚是否只是作为输出,如果是设置为1。
回到驱动中,看其中最重要的i2c_gpio_probe。
1. static int __devinit i2c_gpio_probe(struct platform_device *pdev) 2. { 3. struct i2c_gpio_platform_data *pdata; 4. struct i2c_algo_bit_data *bit_data; 5. struct i2c_adapter *adap; 6. int ret; 7. 8. pdata = pdev->dev.platform_data; 9. if (!pdata) 10. return -ENXIO; 11. 12. ret = -ENOMEM; 13. adap = kzalloc(sizeof(struct i2c_adapter), GFP_KERNEL); 14. if (!adap) 15. goto err_alloc_adap; 16. bit_data = kzalloc(sizeof(struct i2c_algo_bit_data), GFP_KERNEL); 17. if (!bit_data) 18. goto err_alloc_bit_data; 19. 20. ret = gpio_request(pdata->sda_pin, "sda"); 21. if (ret) 22. goto err_request_sda; 23. ret = gpio_request(pdata->scl_pin, "scl"); 24. if (ret) 25. goto err_request_scl; 26. 27. if (pdata->sda_is_open_drain) { 28. gpio_direction_output(pdata->sda_pin, 1); 29. bit_data->setsda = i2c_gpio_setsda_val; 30. } else { 31. gpio_direction_input(pdata->sda_pin); 32. bit_data->setsda = i2c_gpio_setsda_dir; 33. } 34. 35. if (pdata->scl_is_open_drain || pdata->scl_is_output_only) { 36. gpio_direction_output(pdata->scl_pin, 1); 37. bit_data->setscl = i2c_gpio_setscl_val; 38. } else { 39. gpio_direction_input(pdata->scl_pin); 40. bit_data->setscl = i2c_gpio_setscl_dir; 41. } 42. 43. if (!pdata->scl_is_output_only) 44. bit_data->getscl = i2c_gpio_getscl; 45. bit_data->getsda = i2c_gpio_getsda; 46. 47. if (pdata->udelay) 48. bit_data->udelay = pdata->udelay; 49. else if (pdata->scl_is_output_only) 50. bit_data->udelay = 50; /* 10 kHz */ 51. else 52. bit_data->udelay = 5; /* 100 kHz */ 53. 54. if (pdata->timeout) 55. bit_data->timeout = pdata->timeout; 56. else 57. bit_data->timeout = HZ / 10; /* 100 ms */ 58. 59. bit_data->data = pdata; 60. 61. adap->owner = THIS_MODULE; 62. snprintf(adap->name, sizeof(adap->name), "i2c-gpio%d", pdev->id); 63. adap->algo_data = bit_data; 64. adap->class = I2C_CLASS_HWMON | I2C_CLASS_SPD; 65. adap->dev.parent = &pdev->dev; 66. 67. /* 68. * If "dev->id" is negative we consider it as zero. 69. * The reason to do so is to avoid sysfs names that only make 70. * sense when there are multiple adapters. 71. */ 72. adap->nr = (pdev->id != -1) ? pdev->id : 0; 73. ret = i2c_bit_add_numbered_bus(adap); 74. if (ret) 75. goto err_add_bus; 76. 77. platform_set_drvdata(pdev, adap); 78. 79. dev_info(&pdev->dev, "using pins %u (SDA) and %u (SCL%s)\n", 80. pdata->sda_pin, pdata->scl_pin, 81. pdata->scl_is_output_only 82. ? ", no clock stretching" : ""); 83. 84. return 0; 85. 86. err_add_bus: 87. gpio_free(pdata->scl_pin); 88. err_request_scl: 89. gpio_free(pdata->sda_pin); 90. err_request_sda: 91. kfree(bit_data); 92. err_alloc_bit_data: 93. kfree(adap); 94. err_alloc_adap: 95. return ret; 96. }
从这句开始pdata= pdev->dev.platform_data;这不正是我们在平台设备结构中定义的数据吗。然后是使用kzalloc申请两段内存空间,一个是为结构struct i2c_adapter申请的,另一个是为结构structi2c_algo_bit_data申请的。
struct i2c_adapter结构定义在include/linux/i2c.h中
1. struct i2c_adapter { 2. struct module *owner; 3. unsigned int id; 4. unsigned int class; /* classes to allow probing for */ 5. const struct i2c_algorithm *algo; /* the algorithm to access the bus */ 6. void *algo_data; 7. 8. /* data fields that are valid for all devices */ 9. u8 level; /* nesting level for lockdep */ 10. struct mutex bus_lock; 11. 12. int timeout; /* in jiffies */ 13. int retries; 14. struct device dev; /* the adapter device */ 15. 16. int nr; 17. char name[48]; 18. struct completion dev_released; 19. };
在I2C子系统中,I2C适配器使用结构struct i2c_adapter描述,代表一条实际的I2C总线。
struct i2c_algo_bit_data结构定义在include/linux/i2c-algo-bit.h中
1. struct i2c_algo_bit_data { 2. void *data; /* private data for lowlevel routines */ 3. void (*setsda) (void *data, int state); 4. void (*setscl) (void *data, int state); 5. int (*getsda) (void *data); 6. int (*getscl) (void *data); 7. 8. /* local settings */ 9. int udelay; /* half clock cycle time in us, 10. minimum 2 us for fast-mode I2C, 11. minimum 5 us for standard-mode I2C and SMBus, 12. maximum 50 us for SMBus */ 13. int timeout; /* in jiffies */ 14. };
这个结构主要用来定义对GPIO管脚的一些操作,还是回到probe中
接下来使用gpio_request去申请这个两个GPIO管脚,申请的目的是为了防止重复使用管脚。然后是根据struct i2c_gpio_platform_data结构中定义的后面三个数据对struct i2c_algo_bit_data结构中的函数指针做一些赋值操作。接下来是I2C时钟频率和超时设置,如果在struct i2c_gpio_platform_data结构中定义了值,那么就采用定义的值,否则就采用默认的值。然后是对struct i2c_adapter结构的一些赋值操作,比如指定它的父设备为这里的平台设备,前面在平台设备中定义了一个id,这里用到了,赋给了struct i2c_adapter中的nr成员,这个值表示总线号,这里的总线号和硬件无关,只是在软件上的区分。然后到了最后的主角i2c_bit_add_numbered_bus,这个函数定义在drivers/i2c/algos/i2c-algo-bit.c中
1. int i2c_bit_add_numbered_bus(struct i2c_adapter *adap) 2. { 3. int err; 4. 5. err = i2c_bit_prepare_bus(adap); 6. if (err) 7. return err; 8. 9. return i2c_add_numbered_adapter(adap); 10. }先看 i2c_bit_prepare_bus函数
1. static int i2c_bit_prepare_bus(struct i2c_adapter *adap) 2. { 3. struct i2c_algo_bit_data *bit_adap = adap->algo_data; 4. 5. if (bit_test) { 6. int ret = test_bus(bit_adap, adap->name); 7. if (ret < 0) 8. return -ENODEV; 9. } 10. 11. /* register new adapter to i2c module... */ 12. adap->algo = &i2c_bit_algo; 13. adap->retries = 3; 14. 15. return 0; 16. }
bit_test为模块参数,这里不管它,看这样一句adap->algo= &i2c_bit_algo;
来看这个结构定义
1. static const struct i2c_algorithm i2c_bit_algo = { 2. .master_xfer = bit_xfer, 3. .functionality = bit_func, 4. };先看这个结构类型在哪里定义的 include/linux/i2c.h
1. struct i2c_algorithm { 2. /* If an adapter algorithm can't do I2C-level access, set master_xfer 3. to NULL. If an adapter algorithm can do SMBus access, set 4. smbus_xfer. If set to NULL, the SMBus protocol is simulated 5. using common I2C messages */ 6. /* master_xfer should return the number of messages successfully 7. processed, or a negative value on error */ 8. int (*master_xfer)(struct i2c_adapter *adap, struct i2c_msg *msgs, 9. int num); 10. int (*smbus_xfer) (struct i2c_adapter *adap, u16 addr, 11. unsigned short flags, char read_write, 12. u8 command, int size, union i2c_smbus_data *data); 13. 14. /* To determine what the adapter supports */ 15. u32 (*functionality) (struct i2c_adapter *); 16. };
其实也没什么,就三个函数指针外加一长串注释
这个结构的master_xfer指针为主机的数据传输,具体来看bit_xfer这个函数,这个函数和I2C协议相关,I2C协议规定要先发送起始信号,才能开始进行数据的传输,最后数据传输完成后发送停止信号,看接下来代码对I2C协议要熟悉,所以这里的关键点是I2C协议。
- static int bit_xfer(struct i2c_adapter *i2c_adap,
- struct i2c_msg msgs[], int num)
- {
- struct i2c_msg *pmsg;
- struct i2c_algo_bit_data *adap = i2c_adap->algo_data;
- int i, ret;
- unsigned short nak_ok;
- bit_dbg(3, &i2c_adap->dev, "emitting start condition\n");
- /*发送起始信号*/
- i2c_start(adap);
- for (i = 0; i < num; i++) {
- pmsg = &msgs[i];
- nak_ok = pmsg->flags & I2C_M_IGNORE_NAK;
- if (!(pmsg->flags & I2C_M_NOSTART)) {
- if (i) {
- bit_dbg(3, &i2c_adap->dev, "emitting "
- "repeated start condition\n");
- i2c_repstart(adap);
- }
- ret = bit_doAddress(i2c_adap, pmsg);
- if ((ret != 0) && !nak_ok) {
- bit_dbg(1, &i2c_adap->dev, "NAK from "
- "device addr 0x%02x msg #%d\n",
- msgs[i].addr, i);
- goto bailout;
- }
- }
- if (pmsg->flags & I2C_M_RD) {
- /* read bytes into buffer*/
- ret = readbytes(i2c_adap, pmsg);
- if (ret >= 1)
- bit_dbg(2, &i2c_adap->dev, "read %d byte%s\n",
- ret, ret == 1 ? "" : "s");
- if (ret < pmsg->len) {
- if (ret >= 0)
- ret = -EREMOTEIO;
- goto bailout;
- }
- } else {
- /* write bytes from buffer */
- ret = sendbytes(i2c_adap, pmsg);
- if (ret >= 1)
- bit_dbg(2, &i2c_adap->dev, "wrote %d byte%s\n",
- ret, ret == 1 ? "" : "s");
- if (ret < pmsg->len) {
- if (ret >= 0)
- ret = -EREMOTEIO;
- goto bailout;
- }
- }
- }
- ret = i;
- bailout:
- bit_dbg(3, &i2c_adap->dev, "emitting stop condition\n");
- i2c_stop(adap);
- return ret;
- }
1.发送起始信号
i2c_start(adap);
看这个函数前,先看I2C协议怎么定义起始信号的
起始信号就是在SCL为高电平期间,SDA从高到低的跳变,再来看代码是怎么实现的
1. static void i2c_start(struct i2c_algo_bit_data *adap) 2. { 3. /* assert: scl, sda are high */ 4. setsda(adap, 0); 5. udelay(adap->udelay); 6. scllo(adap); 7. }
这些 setsda和 setscl这些都是使用的总线的函数,在这里是使用的 i2c-gpio.c中定义的函数,还记得那一系列判断赋值吗。
- #define setsda(adap, val) adap->setsda(adap->data, val)
- #define setscl(adap, val) adap->setscl(adap->data, val)
- #define getsda(adap) adap->getsda(adap->data)
- #define getscl(adap) adap->getscl(adap->data)
2.往下是个大的for循环
到了这里又不得不说这个struct i2c_msg结构,这个结构定义在include/linux/i2c.h中
1. struct i2c_msg { 2. __u16 addr; /* slave address */ 3. __u16 flags; 4. #define I2C_M_TEN 0x0010 /* this is a ten bit chip address */ 5. #define I2C_M_RD 0x0001 /* read data, from slave to master */ 6. #define I2C_M_NOSTART 0x4000 /* if I2C_FUNC_PROTOCOL_MANGLING */ 7. #define I2C_M_REV_DIR_ADDR 0x2000 /* if I2C_FUNC_PROTOCOL_MANGLING */ 8. #define I2C_M_IGNORE_NAK 0x1000 /* if I2C_FUNC_PROTOCOL_MANGLING */ 9. #define I2C_M_NO_RD_ACK 0x0800 /* if I2C_FUNC_PROTOCOL_MANGLING */ 10. #define I2C_M_RECV_LEN 0x0400 /* length will be first received byte */ 11. __u16 len; /* msg length */ 12. __u8 *buf; /* pointer to msg data */ 13. };
这个结构专门用于数据传输相关的addr为I2C设备地址,flags为一些标志位,len为数据的长度,buf为数据。这里宏定义的一些标志还是需要了解一下。
I2C_M_TEN表示10位设备地址
I2C_M_RD读标志
I2C_M_NOSTART无起始信号标志
I2C_M_IGNORE_NAK忽略应答信号标志
回到for,这里的num代表有几个struct i2c_msg,进入for语句,接下来是个if语句,判断这个设备是否定义了I2C_M_NOSTART标志,这个标志主要用于写操作时,不必重新发送起始信号和设备地址,但是对于读操作就不同了,要调用i2c_repstart这个函数去重新发送起始信号,调用bit_doAddress函数去重新构造设备地址字节,来看这个函数。
- static int bit_doAddress(struct i2c_adapter *i2c_adap, struct i2c_msg *msg)
- {
- unsigned short flags = msg->flags;
- unsigned short nak_ok = msg->flags & I2C_M_IGNORE_NAK;
- struct i2c_algo_bit_data *adap = i2c_adap->algo_data;
- unsigned char addr;
- int ret, retries;
- retries = nak_ok ? 0 : i2c_adap->retries;
- if (flags & I2C_M_TEN) {
- /* a ten bit address */
- addr = 0xf0 | ((msg->addr >> 7) & 0x03);
- bit_dbg(2, &i2c_adap->dev, "addr0: %d\n", addr);
- /* try extended address code...*/
- ret = try_address(i2c_adap, addr, retries);
- if ((ret != 1) && !nak_ok) {
- dev_err(&i2c_adap->dev,
- "died at extended address code\n");
- return -EREMOTEIO;
- }
- /* the remaining 8 bit address */
- ret = i2c_outb(i2c_adap, msg->addr & 0x7f);
- if ((ret != 1) && !nak_ok) {
- /* the chip did not ack / xmission error occurred */
- dev_err(&i2c_adap->dev, "died at 2nd address code\n");
- return -EREMOTEIO;
- }
- if (flags & I2C_M_RD) {
- bit_dbg(3, &i2c_adap->dev, "emitting repeated "
- "start condition\n");
- i2c_repstart(adap);
- /* okay, now switch into reading mode */
- addr |= 0x01;
- ret = try_address(i2c_adap, addr, retries);
- if ((ret != 1) && !nak_ok) {
- dev_err(&i2c_adap->dev,
- "died at repeated address code\n");
- return -EREMOTEIO;
- }
- }
- } else { /* normal 7bit address */
- addr = msg->addr << 1;
- if (flags & I2C_M_RD)
- addr |= 1;
- if (flags & I2C_M_REV_DIR_ADDR)
- addr ^= 1;
- ret = try_address(i2c_adap, addr, retries);
- if ((ret != 1) && !nak_ok)
- return -ENXIO;
- }
- return 0;
- }
1. static int try_address(struct i2c_adapter *i2c_adap, 2. unsigned char addr, int retries) 3. { 4. struct i2c_algo_bit_data *adap = i2c_adap->algo_data; 5. int i, ret = 0; 6. 7. for (i = 0; i <= retries; i++) { 8. ret = i2c_outb(i2c_adap, addr); 9. if (ret == 1 || i == retries) 10. break; 11. bit_dbg(3, &i2c_adap->dev, "emitting stop condition\n"); 12. i2c_stop(adap); 13. udelay(adap->udelay); 14. yield(); 15. bit_dbg(3, &i2c_adap->dev, "emitting start condition\n"); 16. i2c_start(adap); 17. } 18. if (i && ret) 19. bit_dbg(1, &i2c_adap->dev, "Used %d tries to %s client at " 20. "0x%02x: %s\n", i + 1, 21. addr & 1 ? "read from" : "write to", addr >> 1, 22. ret == 1 ? "success" : "failed, timeout?"); 23. return ret; 24. }
最主要的就是调用i2c_outb发送一个字节,retries为重复次数,看前面adap->retries= 3;
如果发送失败,也就是设备没有给出应答信号,那就发送停止信号,发送起始信号,再发送这个地址字节,这就叫retries。来看这个具体的i2c_outb函数
1. static int i2c_outb(struct i2c_adapter *i2c_adap, unsigned char c) 2. { 3. int i; 4. int sb; 5. int ack; 6. struct i2c_algo_bit_data *adap = i2c_adap->algo_data; 7. 8. /* assert: scl is low */ 9. for (i = 7; i >= 0; i--) { 10. sb = (c >> i) & 1; 11. setsda(adap, sb); 12. udelay((adap->udelay + 1) / 2); 13. if (sclhi(adap) < 0) { /* timed out */ 14. bit_dbg(1, &i2c_adap->dev, "i2c_outb: 0x%02x, " 15. "timeout at bit #%d\n", (int)c, i); 16. return -ETIMEDOUT; 17. } 18. /* FIXME do arbitration here: 19. * if (sb && !getsda(adap)) -> ouch! Get out of here. 20. * 21. * Report a unique code, so higher level code can retry 22. * the whole (combined) message and *NOT* issue STOP. 23. */ 24. scllo(adap); 25. } 26. sdahi(adap); 27. if (sclhi(adap) < 0) { /* timeout */ 28. bit_dbg(1, &i2c_adap->dev, "i2c_outb: 0x%02x, " 29. "timeout at ack\n", (int)c); 30. return -ETIMEDOUT; 31. } 32. 33. /* read ack: SDA should be pulled down by slave, or it may 34. * NAK (usually to report problems with the data we wrote). 35. */ 36. ack = !getsda(adap); /* ack: sda is pulled low -> success */ 37. bit_dbg(2, &i2c_adap->dev, "i2c_outb: 0x%02x %s\n", (int)c, 38. ack ? "A" : "NA"); 39. 40. scllo(adap); 41. return ack; 42. /* assert: scl is low (sda undef) */ 43. }
这个函数有两个参数,一个是structi2c_adapter代表I2C主机,一个是发送的字节数据。那么I2C是怎样将一个字节数据发送出去的呢,那再来看看协议。
首先是发送字节数据的最高位,在时钟为高电平期间将一位数据发送出去,最后是发送字节数据的最低位。发送完成之后,我们需要一个ACK信号,要不然我怎么知道发送成功没有,ACK信号就是在第九个时钟周期时数据线为低,所以在一个字节数据传送完成后,还要将数据线拉高,我们看程序中就是这一句sdahi(adap);等待这个ACK信号的到来,这样一个字节数据就发送完成。
回到bit_xfer函数中,前面只是将设备地址字节发送出去了,那么接下来就是该发送数据了。
注意:这里的数据包括操作设备的基地址
如果是读则调用readbytes函数去读,如果是写则调用sendbytes去写,先看readbytes函数
1. static int readbytes(struct i2c_adapter *i2c_adap, struct i2c_msg *msg) 2. { 3. int inval; 4. int rdcount = 0; /* counts bytes read */ 5. unsigned char *temp = msg->buf; 6. int count = msg->len; 7. const unsigned flags = msg->flags; 8. 9. while (count > 0) { 10. inval = i2c_inb(i2c_adap); 11. if (inval >= 0) { 12. *temp = inval; 13. rdcount++; 14. } else { /* read timed out */ 15. break; 16. } 17. 18. temp++; 19. count--; 20. 21. /* Some SMBus transactions require that we receive the 22. transaction length as the first read byte. */ 23. if (rdcount == 1 && (flags & I2C_M_RECV_LEN)) { 24. if (inval <= 0 || inval > I2C_SMBUS_BLOCK_MAX) { 25. if (!(flags & I2C_M_NO_RD_ACK)) 26. acknak(i2c_adap, 0); 27. dev_err(&i2c_adap->dev, "readbytes: invalid " 28. "block length (%d)\n", inval); 29. return -EREMOTEIO; 30. } 31. /* The original count value accounts for the extra 32. bytes, that is, either 1 for a regular transaction, 33. or 2 for a PEC transaction. */ 34. count += inval; 35. msg->len += inval; 36. } 37. 38. bit_dbg(2, &i2c_adap->dev, "readbytes: 0x%02x %s\n", 39. inval, 40. (flags & I2C_M_NO_RD_ACK) 41. ? "(no ack/nak)" 42. : (count ? "A" : "NA")); 43. 44. if (!(flags & I2C_M_NO_RD_ACK)) { 45. inval = acknak(i2c_adap, count); 46. if (inval < 0) 47. return inval; 48. } 49. } 50. return rdcount; 51. }
其中一个大的while循环,调用i2c_inb去读一个字节,count为数据的长度,单位为多少个字节,
那就来看i2c_inb函数。
- static int i2c_inb(struct i2c_adapter *i2c_adap)
- {
- /* read byte via i2c port, without start/stop sequence */
- /* acknowledge is sent in i2c_read. */
- int i;
- unsigned char indata = 0;
- struct i2c_algo_bit_data *adap = i2c_adap->algo_data;
- /* assert: scl is low */
- sdahi(adap);
- for (i = 0; i < 8; i++) {
- if (sclhi(adap) < 0) { /* timeout */
- bit_dbg(1, &i2c_adap->dev, "i2c_inb: timeout at bit "
- "#%d\n", 7 - i);
- return -ETIMEDOUT;
- }
- indata *= 2;
- if (getsda(adap))
- indata |= 0x01;
- setscl(adap, 0);
- udelay(i == 7 ? adap->udelay / 2 : adap->udelay);
- }
- /* assert: scl is low */
- return indata;
- }
1. static int sendbytes(struct i2c_adapter *i2c_adap, struct i2c_msg *msg) 2. { 3. const unsigned char *temp = msg->buf; 4. int count = msg->len; 5. unsigned short nak_ok = msg->flags & I2C_M_IGNORE_NAK; 6. int retval; 7. int wrcount = 0; 8. 9. while (count > 0) { 10. retval = i2c_outb(i2c_adap, *temp); 11. 12. /* OK/ACK; or ignored NAK */ 13. if ((retval > 0) || (nak_ok && (retval == 0))) { 14. count--; 15. temp++; 16. wrcount++; 17. 18. /* A slave NAKing the master means the slave didn't like 19. * something about the data it saw. For example, maybe 20. * the SMBus PEC was wrong. 21. */ 22. } else if (retval == 0) { 23. dev_err(&i2c_adap->dev, "sendbytes: NAK bailout.\n"); 24. return -EIO; 25. 26. /* Timeout; or (someday) lost arbitration 27. * 28. * FIXME Lost ARB implies retrying the transaction from 29. * the first message, after the "winning" master issues 30. * its STOP. As a rule, upper layer code has no reason 31. * to know or care about this ... it is *NOT* an error. 32. */ 33. } else { 34. dev_err(&i2c_adap->dev, "sendbytes: error %d\n", 35. retval); 36. return retval; 37. } 38. } 39. return wrcount; 40. }
也是一个大的while循环,同发送地址字节一样,也是调用i2c_outb去发送一个字节,count也是数据长度,由于i2c_outb函数在前面发送设备地址那里已经介绍了,这里也就不贴出来了。
还是回到bit_xfer函数,数据传输完成后,调用i2c_stop函数发送停止信号。我们看停止信号函数怎么去实现的。
1. static void i2c_stop(struct i2c_algo_bit_data *adap) 2. { 3. /* assert: scl is low */ 4. sdalo(adap); 5. sclhi(adap); 6. setsda(adap, 1); 7. udelay(adap->udelay); 8. }
看前面发送起始信号的那张图,停止信号就是在时钟为高电平期间,数据线从低到高的跳变。我们看程序是先将数据线拉低,将时钟线拉高,最后将数据拉高,这样就够成了一个停止信号。
还是回到i2c_bit_add_numbered_bus这个函数中来,看另外一个函数调用i2c_add_numbered_adapter。
1. int i2c_add_numbered_adapter(struct i2c_adapter *adap) 2. { 3. int id; 4. int status; 5. 6. if (adap->nr & ~MAX_ID_MASK) 7. return -EINVAL; 8. 9. retry: 10. if (idr_pre_get(&i2c_adapter_idr, GFP_KERNEL) == 0) 11. return -ENOMEM; 12. 13. mutex_lock(&core_lock); 14. /* "above" here means "above or equal to", sigh; 15. * we need the "equal to" result to force the result 16. */ 17. status = idr_get_new_above(&i2c_adapter_idr, adap, adap->nr, &id); 18. if (status == 0 && id != adap->nr) { 19. status = -EBUSY; 20. idr_remove(&i2c_adapter_idr, id); 21. } 22. mutex_unlock(&core_lock); 23. if (status == -EAGAIN) 24. goto retry; 25. 26. if (status == 0) 27. status = i2c_register_adapter(adap); 28. return status; 29. }最重要的是这句 i2c_register_adapter,注册这条 I2C总线,进去看看
- static int i2c_register_adapter(struct i2c_adapter *adap)
- {
- int res = 0, dummy;
- /* Can't register until after driver model init */
- if (unlikely(WARN_ON(!i2c_bus_type.p))) {
- res = -EAGAIN;
- goto out_list;
- }
- mutex_init(&adap->bus_lock);
- /* Set default timeout to 1 second if not already set */
- if (adap->timeout == 0)
- adap->timeout = HZ;
- dev_set_name(&adap->dev, "i2c-%d", adap->nr);
- adap->dev.bus = &i2c_bus_type;
- adap->dev.type = &i2c_adapter_type;
- res = device_register(&adap->dev);
- if (res)
- goto out_list;
- dev_dbg(&adap->dev, "adapter [%s] registered\n", adap->name);
- #ifdef CONFIG_I2C_COMPAT
- res = class_compat_create_link(i2c_adapter_compat_class, &adap->dev,
- adap->dev.parent);
- if (res)
- dev_warn(&adap->dev,
- "Failed to create compatibility class link\n");
- #endif
- /* create pre-declared device nodes */
- if (adap->nr < __i2c_first_dynamic_bus_num)
- i2c_scan_static_board_info(adap);
- /* Notify drivers */
- mutex_lock(&core_lock);
- dummy = bus_for_each_drv(&i2c_bus_type, NULL, adap,
- i2c_do_add_adapter);
- mutex_unlock(&core_lock);
- return 0;
- out_list:
- mutex_lock(&core_lock);
- idr_remove(&i2c_adapter_idr, adap->nr);
- mutex_unlock(&core_lock);
- return res;
- }
看内核代码有时就会这样,会陷入内核代码的汪洋大海中,而拔不出来,直接后果是最后都忘记看这段代码的目的,丧失继续看下去的信心。所以为了避免这样情况出现,所以最好在开始看代码的时候要明确目标,我通过这段代码到底要了解什么东西,主干要抓住,其它枝叶就不要看了。
在这里我认为主要的有
1.注册这个I2C总线设备
1. adap->dev.bus = &i2c_bus_type; 2. adap->dev.type = &i2c_adapter_type; 3. res = device_register(&adap->dev);这个设备的总线类型为 i2c_bus_type
1. struct bus_type i2c_bus_type = { 2. .name = "i2c", 3. .match = i2c_device_match, 4. .probe = i2c_device_probe, 5. .remove = i2c_device_remove, 6. .shutdown = i2c_device_shutdown, 7. .suspend = i2c_device_suspend, 8. .resume = i2c_device_resume, 9. };
看一下它的 match函数
1. static int i2c_device_match(struct device *dev, struct device_driver *drv) 2. { 3. struct i2c_client *client = i2c_verify_client(dev); 4. struct i2c_driver *driver; 5. 6. if (!client) 7. return 0; 8. 9. driver = to_i2c_driver(drv); 10. /* match on an id table if there is one */ 11. if (driver->id_table) 12. return i2c_match_id(driver->id_table, client) != NULL; 13. 14. return 0; 15. }
这个 match函数主要用来匹配我们的 I2C设备和 I2C驱动的,如果匹配成功,最后会调用驱动的 probe函数,来看它如何匹配的。
1. static const struct i2c_device_id *i2c_match_id(const struct i2c_device_id *id, 2. const struct i2c_client *client) 3. { 4. while (id->name[0]) { 5. if (strcmp(client->name, id->name) == 0) 6. return id; 7. id++; 8. } 9. return NULL; 10. }
就是判断I2C设备的name字段和驱动中id_table中定义的name字段是否相等。
2.往这条总线上添加设备
1. static void i2c_scan_static_board_info(struct i2c_adapter *adapter) 2. { 3. struct i2c_devinfo *devinfo; 4. 5. down_read(&__i2c_board_lock); 6. list_for_each_entry(devinfo, &__i2c_board_list, list) { 7. if (devinfo->busnum == adapter->nr 8. && !i2c_new_device(adapter, 9. &devinfo->board_info)) 10. dev_err(&adapter->dev, 11. "Can't create device at 0x%02x\n", 12. devinfo->board_info.addr); 13. } 14. up_read(&__i2c_board_lock); 15. }遍历 __i2c_board_list这条链表,看下面的 if语句,首先要让 struct i2c_devinfo结构中的 busnum等于 struct i2c_adapter中的 nr,我们前面也说了,这个 nr就是 i2c总线的总线号,这里可以理解为是在往这条总线上添加设备。所以,如果我们要向 I2C注册一个 I2C 设备的话,直接向 __i2c_board_list添加一个设备信息就可以了,先来看这个设备信息结构是怎么定义的。
1. struct i2c_board_info { 2. char type[I2C_NAME_SIZE]; 3. unsigned short flags; 4. unsigned short addr; 5. void *platform_data; 6. struct dev_archdata *archdata; 7. int irq; 8. };定义这样一个信息呢一般使用一个宏 I2C_BOARD_INFO
# #define I2C_BOARD_INFO(dev_type, dev_addr) \ # .type = dev_type, .addr = (dev_addr)
dev_type为设备的名字,前面也说了,这个name一定要和I2C驱动相同。addr为设备的地址。 定义了这样一组信息之后呢,接下来当然是往链表添加这些信息了。
1. int __init 2. i2c_register_board_info(int busnum, 3. struct i2c_board_info const *info, unsigned len) 4. { 5. int status; 6. 7. down_write(&__i2c_board_lock); 8. 9. /* dynamic bus numbers will be assigned after the last static one */ 10. if (busnum >= __i2c_first_dynamic_bus_num) 11. __i2c_first_dynamic_bus_num = busnum + 1; 12. 13. for (status = 0; len; len--, info++) { 14. struct i2c_devinfo *devinfo; 15. 16. devinfo = kzalloc(sizeof(*devinfo), GFP_KERNEL); 17. if (!devinfo) { 18. pr_debug("i2c-core: can't register boardinfo!\n"); 19. status = -ENOMEM; 20. break; 21. } 22. 23. devinfo->busnum = busnum; 24. devinfo->board_info = *info; 25. list_add_tail(&devinfo->list, &__i2c_board_list); 26. } 27. 28. up_write(&__i2c_board_lock); 29. 30. return status; 31. }
第一个参数呢需要注意,它是 I2C总线号,一定要和具体的 I2C总线对应。我们看又定义了这样一个结构 struct i2c_devinfo。
最后是调用list_add_tail往__i2c_board_list这条链表添加设备信息。
然后是i2c_new_device
# struct i2c_client * # i2c_new_device(struct i2c_adapter *adap, struct i2c_board_info const *info) # { # struct i2c_client *client; # int status; # # /*为I2C设备申请内存*/ # client = kzalloc(sizeof *client, GFP_KERNEL); # if (!client) # return NULL; # # /*指定I2C设备的总线*/ # client->adapter = adap; # # client->dev.platform_data = info->platform_data; # # if (info->archdata) # client->dev.archdata = *info->archdata; # # client->flags = info->flags; # client->addr = info->addr; /*I2C设备地址*/ # client->irq = info->irq; # # strlcpy(client->name, info->type, sizeof(client->name)); # # /*检查这个地址有没有被设备占用*/ # /* Check for address business */ # status = i2c_check_addr(adap, client->addr); # if (status) # goto out_err; # # client->dev.parent = &client->adapter->dev; /*指定设备的父设备*/ # client->dev.bus = &i2c_bus_type; /*指定设备的总线类型*/ # client->dev.type = &i2c_client_type; # # dev_set_name(&client->dev, "%d-%04x", i2c_adapter_id(adap), # client->addr); # status = device_register(&client->dev); /*注册设备*/ # if (status) # goto out_err; # # dev_dbg(&adap->dev, "client [%s] registered with bus id %s\n", # client->name, dev_name(&client->dev)); # # return client; # # out_err: # dev_err(&adap->dev, "Failed to register i2c client %s at 0x%02x " # "(%d)\n", client->name, client->addr, status); # kfree(client); # return NULL;
这个函数的功能是新建一个I2C设备并注册它,在I2C子系统中,I2C设备使用结构structi2c_client描述,那么首先要申请内存空间,I2C设备的主机是谁,必须知道挂载到哪条总线上的,然后就是一些赋值操作,最后就是注册设备,那么这个设备就实实在在的挂在到这条总线上了,这也是新的I2C设备注册方式。
3.i2c_do_add_adapter
你看说着说着就跑远了
1. static int i2c_do_add_adapter(struct device_driver *d, void *data) 2. { 3. struct i2c_driver *driver = to_i2c_driver(d); 4. struct i2c_adapter *adap = data; 5. 6. /* Detect supported devices on that bus, and instantiate them */ 7. i2c_detect(adap, driver); 8. 9. /* Let legacy drivers scan this bus for matching devices */ 10. if (driver->attach_adapter) { 11. /* We ignore the return code; if it fails, too bad */ 12. driver->attach_adapter(adap); 13. } 14. return 0; 15. }
前面通过 i2c_scan_static_board_info 往 I2C总线上添加设备是新的方式,而这里调用每个 I2C设备驱动的 attach_adapter函数,然后在 attach_adapter函数中去实现设备的注册,这是老的方式, i2c-dev.c中就是采用的这种方式。至此,总线这块就看完了。