HDU 3400 Line belt【三分套三分】

时间:2022-01-08 17:43:13

从A出发到D,必定有从AB某个点E出发,从某个点F进入CD

故有E,F两个不确定的值。

在AB上行走的时间     f = AE / p

在其他区域行走的时间  g = EF / r

在CD上行走的时间     h = FD / q

总时间 T = f + g + h

当E确定时,T= g + h + C   此时g时一个先减后增的凹函数,h是一个单调递减的凹函数,根据凹函数的性质,故T1是一个凹函数

反之亦然,故需要三分确定其中一个点的位置,再三分另一个点的位置。

#include<stdio.h>
#include<string.h>
#include<math.h>
const double eps=1e-;
struct node{
double x,y;
}a,b,c,d,e,f;
double p,q,r;
double dis(node A,node B){
double x=A.x-B.x;
double y=A.y-B.y;
return sqrt(x*x+y*y);
}
double cal(double bi){
f.x=c.x+(d.x-c.x)*bi;
f.y=c.y+(d.y-c.y)*bi;
return dis(e,f)/r+dis(f,d)/q;
}
double find2(double bi){
e.x=a.x+(b.x-a.x)*bi;
e.y=a.y+(b.y-a.y)*bi;
double l=,r=,mid,mmid;
while(r-l>eps){
mid=(l+r)/;
mmid=(mid+r)/;
if(cal(mid)<cal(mmid))
r=mmid;
else
l=mid;
}
return cal(l)+dis(a,e)/p;
}
double find1(){
double l=,r=,mid,mmid;
while(r-l>eps){
mid=(l+r)/;
mmid=(mid+r)/;
if(find2(mid)<find2(mmid))
r=mmid;
else
l=mid;
}
return find2(l);
}
int main(){
int t;
scanf("%d",&t);
while(t--){
scanf("%lf%lf%lf%lf",&a.x,&a.y,&b.x,&b.y);
scanf("%lf%lf%lf%lf",&c.x,&c.y,&d.x,&d.y);
scanf("%lf%lf%lf",&p,&q,&r);
printf("%.2f\n",find1());
}
return ;
}