http://www.cnblogs.com/sankye/articles/1638852.html
向作者Sankye致敬
【编写驱动之前要了解的知识】
1. 硬件特性:
【Flash的硬件实现机制】
Flash全名叫做Flash Memory,属于非易失性存储设备(Non-volatile Memory Device),与此相对应的是易失性存储设备(Volatile Memory Device)。关于什么是非易失性/易失性,从名字中就可以看出,非易失性就是不容易丢失,数据存储在这类设备中,即使断电了,也不会丢失,这类设备,除了Flash,还有其他比较常见的入硬盘,ROM等,与此相对的,易失性就是断电了,数据就丢失了,比如大家常用的内存,不论是以前的SDRAM,DDR SDRAM,还是现在的DDR2,DDR3等,都是断电后,数据就没了。
Flash的内部存储是MOSFET,里面有个悬浮门(Floating Gate),是真正存储数据的单元。
在Flash之前,紫外线可擦除(uv-erasable)的EPROM,就已经采用用Floating Gate存储数据这一技术了。
图1.典型的Flash内存单元的物理结构
数据在Flash内存单元中是以电荷(electrical charge) 形式存储的。存储电荷的多少,取决于图中的外部门(external gate)所被施加的电压,其控制了是向存储单元中冲入电荷还是使其释放电荷。而数据的表示,以所存储的电荷的电压是否超过一个特定的阈值Vth来表示。
【SLC和MLC的实现机制】
Nand Flash按照内部存储数据单元的电压的不同层次,也就是单个内存单元中,是存储1位数据,还是多位数据,可以分为SLC和MLC:
1. SLC,Single Level Cell:
单个存储单元,只存储一位数据,表示成1或0.
就是上面介绍的,对于数据的表示,单个存储单元中内部所存储电荷的电压,和某个特定的阈值电压Vth,相比,如果大于此Vth值,就是表示1,反之,小于Vth,就表示0.
对于nand Flash的数据的写入1,就是控制External Gate去充电,使得存储的电荷够多,超过阈值Vth,就表示1了。而对于写入0,就是将其放电,电荷减少到小于Vth,就表示0了。
关于为何Nand Flash不能从0变成1,我的理解是,物理上来说,是可以实现每一位的,从0变成1的,但是实际上,对于实际的物理实现,出于效率的考虑,如果对于,每一个存储单元都能单独控制,即,0变成1就是,对每一个存储单元单独去充电,所需要的硬件实现就很复杂和昂贵,同时,所进行对块擦除的操作,也就无法实现之前的,一闪而过的速度了,也就失去了Flash的众多特性了。
2. MLC,Multi Level Cell:
与SLC相对应,就是单个存储单元,可以存储多个位,比如2位,4位等。其实现机制,说起来比较简单,就是,通过控制内部电荷的多少,分成多个阈值,通过控制里面的电荷多少,而达到我们所需要的存储成不同的数据。比如,假设输入电压是Vin=4V(实际没有这样的电压,此处只是为了举例方便),那么,可以设计出2的2次方=4个阈值, 1/4的Vin=1V,2/4的Vin=2V,3/4的Vin=3V,Vin=4V,分别表示2位数据00,01,10,11,对于写入数据,就是充电,通过控制内部的电荷的多少,对应表示不同的数据。
对于读取,则是通过对应的内部的电流(与Vth成反比),然后通过一系列解码电路完成读取,解析出所存储的数据。这些具体的物理实现,都是有足够精确的设备和技术,才能实现精确的数据写入和读出的。
单个存储单元可以存储2位数据的,称作2的2次方=4 Level Cell,而不是2 Level Cell,这点,之前差点搞晕了。。。,同理,对于新出的单个存储单元可以存储4位数据的,称作 2的4次方=16 Level Cell。
【关于如何识别SLC还是MLC】
Nand Flash设计中,有个命令叫做Read ID,读取ID,意思是读取芯片的ID,就像大家的身份证一样,这里读取的ID中,是读取好几个字节,一般最少是4个,新的芯片,支持5个甚至更多,从这些字节中,可以解析出很多相关的信息,比如此Nand Flash内部是几个芯片(chip)所组成的,每个chip包含了几片(Plane),每一片中的页大小,块大小,等等。在这些信息中,其中有一个,就是识别此flash是SLC还是MLC。下面这个就是最常见的Nand Flash的datasheet中所规定的,第3个字节,3rd byte,所表示的信息,其中就有SLC/MLC的识别信息:
|
Description |
I/O7 |
I/O6 |
I/O5 I/O4 |
I/O3 I/O2 |
I/O1 I/O0 |
Internal Chip Number |
1 2 4 8 |
|
|
|
|
0 0 0 1 1 0 1 1 |
Cell Type |
2 Level Cell 4 Level Cell 8 Level Cell 16 Level Cell |
|
|
|
0 0 0 1 1 0 1 1 |
|
Number of Simultaneously Programmed Pages |
1 2 4 8 |
|
|
0 0 0 1 1 0 1 1 |
|
|
Interleave Program Between multiple chips |
Not Support Support |
|
0 1 |
|
|
|
Cache Program |
Not Support Support |
0 1 |
|
|
|
|
表1.Nand Flash 第3个ID的含义
【Nand Flash的物理存储单元的阵列组织结构】
Nand flash的内部组织结构,此处还是用图来解释,比较容易理解:
图2.Nand Flash物理存储单元的阵列组织结构
上图是K9K8G08U0A的datasheet中的描述。
简单解释就是:
1.一个nand flash由很多个块(Block)组成,块的大小一般是128KB,256KB,512KB,此处是128KB。
2.每个块里面又包含了很多页(page)。每个页的大小,对于现在常见的nand flash多数是2KB,更新的nand flash是4KB,这类的,页大小大于2KB的nand flash,被称作big block,对应的发读写命令地址,一共5个周期(cycle),而老的nand flash,页大小是256B,512B,这类的nand flash被称作small block,。地址周期只有4个。
而块,也是Nand Flash的擦除操作的基本/最小单位。
3.每一个页,对应还有一块区域,叫做空闲区域(spare area)/冗余区域(redundant area),而Linux系统中,一般叫做OOB(Out Of Band),这个区域,是最初基于Nand Flash的硬件特性:数据在读写时候相对容易错误,所以为了保证数据的正确性,必须要有对应的检测和纠错机制,此机制被叫做EDC(Error Detection Co
页是Nand Flash的写入操作的基本/最小的单位。
【Nand Flash数据存储单元的整体架构】
简单说就是,常见的nand flash,内部只有一个chip,每个chip只有一个plane。
而有些复杂的,容量更大的nand flash,内部有多个chip,每个chip有多个plane。这类的nand flash,往往也有更加高级的功能,比如下面要介绍的Multi Plane Program和Interleave Page Program等。
比如,型号为K9K8G08U0A这个芯片(chip),内部有两个K9F4G08U0A,每个K9F4G08U0A包含了2个Plane,每个Plane是1Gb,所以K9F4G08U0A的大小是1Gb×2=2Gb=256MB,因此,K9K8G08U0A内部有2个K9F4G08U0A,即4个Plane,总大小是4×256MB=1GB。
而型号是K9WAG08U1A的nand flash,内部包含了2个K9K8G08U0A,所以,总容量是K9K8G08U0A的两倍=1GB×2=2GB,类似地K9NBG08U5A,内部包含了4个K9K8G08U0A,总大小就是4×1GB=4GB。
【Flash名称的由来】
Flash的擦除操作是以block块为单位的,与此相对应的是其他很多存储设备,是以bit位为最小读取/写入的单位,Flash是一次性地擦除整个块:在发送一个擦除命令后,一次性地将一个block,常见的块的大小是128KB/256KB。。,全部擦除为1,也就是里面的内容全部都是0xFF了,由于是一下子就擦除了,相对来说,擦除用的时间很短,可以用一闪而过来形容,所以,叫做Flash Memory。中文有的翻译为 (快速)闪存。
【Flash相对于普通设备的特殊性】
1. 上面提到过的,Flash最小操作单位,有些特殊。
一般设备,比如硬盘/内存,读取和写入都是以bit位为单位,读取一个bit的值,将某个值写入对应的地址的位,都是可以按位操作的。
但是Flash由于物理特性,使得内部存储的数据,只能从1变成0,这点,可以从前面的内部实现机制了解到,只是方便统一充电,不方便单独的存储单元去放电,所以才说,只能从1变成0,也就是释放电荷。
所以,总结一下Flash的特殊性如下:
|
普通设备(硬盘/内存等) |
Flash |
读取/写入的叫法 |
读取/写入 |
读取/编程(Program)① |
读取/写入的最小单位 |
Bit/位 |
Page/页 |
擦除(Erase)操作的最小单位 |
Bit/位 |
Block/块 ② |
擦除操作的含义 |
将数据删除/全部写入0 |
将整个块都擦除成全是1,也就是里面的数据都是0xFF ③ |
对于写操作 |
直接写即可 |
在写数据之前,要先擦除,然后再写 |
表2.Flash和普通设备相比所具有的特殊性
注:
① 之所以将写操作叫做编程,是因为,flash 和之前的EPROM,EEPROM继承发展而来,而之前的EEPROM(Electrically Erasable Programmable Read-On
② 对于目前常见的页大小是2K/4K的Nand Flash,其块的大小有128KB/256KB/512KB等。而对于Nor Flash,常见的块大小有64K/32K等。
③在写数据之前,要先擦除,内部就都变成0xFF了,然后才能写入数据,也就是将对应位由1变成0。
【Nand Flash引脚(Pin)的说明】
图3.Nand Flash引脚功能说明
上图是常见的Nand Flash所拥有的引脚(Pin)所对应的功能,简单翻译如下:
1. I/O0 ~ I/O7:用于输入地址/数据/命令,输出数据
2. CLE:Command Latch Enable,命令锁存使能,在输入命令之前,要先在模式寄存器中,设置CLE使能
3. ALE:Address Latch Enable,地址锁存使能,在输入地址之前,要先在模式寄存器中,设置ALE使能
4. CE#:Chip Enable,芯片使能,在操作Nand Flash之前,要先选中此芯片,才能操作
5. RE#:Read Enable,读使能,在读取数据之前,要先使CE#有效。
6. WE#:Write Enable,写使能, 在写取数据之前,要先使WE#有效。
7. WP#:Write Protect,写保护
8. R/B#:Ready/Busy Output,就绪/忙,主要用于在发送完编程/擦除命令后,检测这些操作是否完成,忙,表示编程/擦除操作仍在进行中,就绪表示操作完成.
9. Vcc:Power,电源
10. Vss:Ground,接地
11. N.C:Non-Connection,未定义,未连接。
[小常识]
在数据手册中,你常会看到,对于一个引脚定义,有些字母上面带一横杠的,那是说明此引脚/信号是低电平有效,比如你上面看到的RE头上有个横线,就是说明,此RE是低电平有效,此外,为了书写方便,在字母后面加“#”,也是表示低电平有效,比如我上面写的CE#;如果字母头上啥都没有,就是默认的高电平有效,比如上面的CLE,就是高电平有效。
【为何需要ALE和CLE】
突然想明白了,Nand Flash中, 为何设计这么多的命令,把整个系统搞这么复杂的原因了:
比如命令锁存使能(Command Latch Enable,CLE) 和 地址锁存使能(Address Latch Enable,ALE),那是因为,Nand Flash就8个I/O,而且是复用的,也就是,可以传数据,也可以传地址,也可以传命令,为了区分你当前传入的到底是啥,所以,先要用发一个CLE(或ALE)命令,告诉nand Flash的控制器一声,我下面要传的是命令(或地址),这样,里面才能根据传入的内容,进行对应的动作。否则,nand flash内部,怎么知道你传入的是数据,还是地址,还是命令啊,也就无法实现正确的操作了.
【Nand Flash只有8个I/O引脚的好处】
1. 减少外围引脚:相对于并口(Parellel)的Nor Flash的48或52个引脚来说,的确是大大减小了引脚数目,这样封装后的芯片体积,就小很多。现在芯片在向体积更小,功能更强,功耗更低发展,减小芯片体积,就是很大的优势。同时,减少芯片接口,也意味着使用此芯片的相关的外围电路会更简化,避免了繁琐的硬件连线。
2. 提高系统的可扩展性,因为没有像其他设备一样用物理大小对应的完全数目的addr引脚,在芯片内部换了芯片的大小等的改动,对于用全部的地址addr的引脚,那么就会引起这些引脚数目的增加,比如容量扩大一倍,地址空间/寻址空间扩大一倍,所以,地址线数目/addr引脚数目,就要多加一个,而对于统一用8个I/O的引脚的Nand Flash,由于对外提供的都是统一的8个引脚,内部的芯片大小的变化或者其他的变化,对于外部使用者(比如编写nand flash驱动的人)来说,不需要关心,只是保证新的芯片,还是遵循同样的接口,同样的时序,同样的命令,就可以了。这样就提高了系统的扩展性。
【Nand flash的一些典型(typical)特性】
1.页擦除时间是200us,有些慢的有800us。
2.块擦除时间是1.5ms.
3.页数据读取到数据寄存器的时间一般是20us。
4.串行访问(Serial access)读取一个数据的时间是25ns,而一些旧的nand flash是30ns,甚至是50ns。
5.输入输出端口是地址和数据以及命令一起multiplex复用的。
以前老的Nand Flash,编程/擦除时间比较短,比如K9G8G08U0M,才5K次,而后来很多6.nand flash的编程/擦除的寿命,最多允许的次数,以前的nand flash多数是10K次,也就是1万次,而现在很多新的nand flash,技术提高了,比如,Micron的MT29F1GxxABB,Numonyx的 NAND04G-B2D/NAND08G-BxC,都可以达到100K,也就是10万次的编程/擦除。和之前常见的Nor Flash达到同样的使用寿命了。
7.48引脚的TSOP1封装 或 52引脚的ULGA封装
【Nand Flash中的特殊硬件结构】
由于nand flash相对其他常见设备来说,比较特殊,所以,特殊的设备,也有特殊的设计,所以,有些特殊的硬件特性,就有比较解释一下:
1. 页寄存器(Page Register):由于Nand Flash读取和编程操作来说,一般最小单位是页,所以,nand flash在硬件设计时候,就考虑到这一特性,对于每一片,都有一个对应的区域,专门用于存放,将要写入到物理存储单元中去的或者刚从存储单元中读取出来的,一页的数据,这个数据缓存区,本质上就是一个buffer,但是只是名字叫法不同,datasheet里面叫做Page Register,此处翻译为 页寄存器,实际理解为页缓存,更为恰当些。而正是因为有些人不了解此内部结构,才容易产生之前遇到的某人的误解,以为内存里面的数据,通过Nand Flash的FIFO,写入到Nand Flash里面去,就以为立刻实现了实际数据写入到物理存储单元中了。而实际上,只是写到了这个页缓存中,只有等你发了对应的编程第二阶段的确认命令0x10之后,实际的编程动作才开始,才开始把页缓存中的数据,一点点写到物理存储单元中去。
所以,简单总结一下就是,对于数据的流向,实际是经过了如下步骤:
图4 Nand Flash读写时的数据流向
【Nand Flash中的坏块(Bad Block)】
Nand Flash中,一个块中含有1个或多个位是坏的,就成为其为坏块。
坏块的稳定性是无法保证的,也就是说,不能保证你写入的数据是对的,或者写入对了,读出来也不一定对的。而正常的块,肯定是写入读出都是正常的。
坏块有两种:
(1)一种是出厂的时候,也就是,你买到的新的,还没用过的Nand Flash,就可以包含了坏块。此类出厂时就有的坏块,被称作factory (masked)bad block或initial bad/invalid block,在出厂之前,就会做对应的标记,标为坏块。
具体标记的地方是,对于现在常见的页大小为2K的Nand Flash,是块中第一个页的oob起始位置(关于什么是页和oob,下面会有详细解释)的第1个字节(旧的小页面,pagesize是512B甚至256B的nand flash,坏块标记是第6个字节),如果不是0xFF,就说明是坏块。相对应的是,所有正常的块,好的块,里面所有数据都是0xFF的。
(2)第二类叫做在使用过程中产生的,由于使用过程时间长了,在擦块除的时候,出错了,说明此块坏了,也要在程序运行过程中,发现,并且标记成坏块的。具体标记的位置,和上面一样。这类块叫做worn-out bad block。
对于坏块的管理,在Linux系统中,叫做坏块管理(BBM,Bad Block Managment),对应的会有一个表去记录好块,坏块的信息,以及坏块是出厂就有的,还是后来使用产生的,这个表叫做坏块表(BBT,Bad Block Table)。在Linux 内核MTD架构下的Nand Flash驱动,和Uboot中Nand Flash驱动中,在加载完驱动之后,如果你没有加入参数主动要求跳过坏块扫描的话,那么都会去主动扫描坏块,建立必要的BBT的,以备后面坏块管理所使用。
而关于好块和坏块,Nand Flash在出厂的时候,会做出保证:
1.关于好的,可以使用的块的数目达到一定的数目,比如三星的K9G8G08U0M,整个flash一共有4096个块,出厂的时候,保证好的块至少大于3996个,也就是意思是,你新买到这个型号的nand flash,最坏的可能, 有3096-3996=100个坏块。不过,事实上,现在出厂时的坏块,比较少,绝大多数,都是使用时间长了,在使用过程中出现的。
2.保证第一个块是好的,并且一般相对来说比较耐用。做此保证的主要原因是,很多Nand Flash坏块管理方法中,就是将第一个块,用来存储上面提到的BBT,否则,都是出错几率一样的块,那么也就不太好管理了,连放BBT的地方,都不好找了,^_^。
一般来说,不同型号的Nand Flash的数据手册中,也会提到,自己的这个nand flash,最多允许多少个坏块。就比如上面提到的,三星的K9G8G08U0M,最多有100个坏块。
对于坏块的标记,本质上,也只是对应的flash上的某些字节的数据是非0xFF而已,所以,只要是数据,就是可以读取和写入的。也就意味着,可以写入其他值,也就把这个坏块标记信息破坏了。对于出厂时的坏块,一般是不建议将标记好的信息擦除掉的。
uboot中有个命令是“nand scrub”就可以将块中所有的内容都擦除了,包括坏块标记,不论是出厂时的,还是后来使用过程中出现而新标记的。一般来说,不建议用这个。不过,我倒是经常用,其实也没啥大碍,呵呵。
最好用“nand erase”只擦除好的块,对于已经标记坏块的块,不擦除。
【nand Flash中页的访问顺序】
在一个块内,对每一个页进行编程的话,必须是顺序的,而不能是随机的。比如,一个块中有128个页,那么你只能先对page0编程,再对page1编程,。。。。,而不能随机的,比如先对page3,再page1,page2.,page0,page4,.。。。
【片选无关(CE don’t-care)技术】
很多Nand flash支持一个叫做CE don’t-care的技术,字面意思就是,不关心是否片选,
那有人会问了,如果不片选,那还能对其操作吗?答案就是,这个技术,主要用在当时是不需要选中芯片却还可以继续操作的这些情况:在某些应用,比如录音,音频播放等应用,中,外部使用的微秒(us)级的时钟周期,此处假设是比较少的2us,在进行读取一页或者对页编程时,是对Nand Flash操作,这样的串行(Serial Access)访问的周期都是20/30/50ns,都是纳秒(ns)级的,此处假设是50ns,当你已经发了对应的读或写的命令之后,接下来只是需要Nand Flash内部去自己操作,将数据读取除了或写入进去到内部的数据寄存器中而已,此处,如果可以把片选取消,CE#是低电平有效,取消片选就是拉高电平,这样会在下一个外部命令发送过来之前,即微秒量级的时间里面,即2us-50ns≈2us,这段时间的取消片选,可以降低很少的系统功耗,但是多次的操作,就可以在很大程度上降低整体的功耗了。
总结起来简单解释就是:由于某些外部应用的频率比较低,而Nand Flash内部操作速度比较快,所以具体读写操作的大部分时间里面,都是在等待外部命令的输入,同时却选中芯片,产生了多余的功耗,此“不关心片选”技术,就是在Nand Flash的内部的相对快速的操作(读或写)完成之后,就取消片选,以节省系统功耗。待下次外部命令/数据/地址输入来的时候,再选中芯片,即可正常继续操作了。这样,整体上,就可以大大降低系统功耗了。
注:Nand Flash的片选与否,功耗差别会有很大。如果数据没有记错的话,我之前遇到我们系统里面的nand flash的片选,大概有5个mA的电流输出呢,要知道,整个系统优化之后的待机功耗,也才10个mA左右的。
【带EDC的拷回操作以及Sector的定义(Copy-Back Operation with EDC & Sector Definition for EDC)】
Copy-Back功能,简单的说就是,将一个页的数据,拷贝到另一个页。
如果没有Copy-Back功能,那么正常的做法就是,先要将那个页的数据拷贝出来放到内存的数据buffer中,读出来之后,再用写命令将这页的数据,写到新的页里面。
而Copy-Back功能的好处在于,不需要用到外部的存储空间,不需要读出来放到外部的buffer里面,而是可以直接读取数据到内部的页寄存器(page register)然后写到新的页里面去。而且,为了保证数据的正确,要硬件支持EDC(Error Detection Co
而对于错误检测来说,硬件一般支持的是512字节数据,对应有16字节用来存放校验产生的ECC数值,而这512字节一般叫做一个扇区。对于2K+64字节大小的页来说,按照512字节分,分别叫做A,B,C,D区,而后面的64字节的oob区域,按照16字节一个区,分别叫做E,F,G,H区,对应存放A,B,C,D数据区的ECC的值。
Copy-Back编程的主要作用在于,去掉了数据串行读取出来,再串行写入进去的时间,所以,而这部分操作,是比较耗时的,所以此技术可以提高编程效率,提高系统整体性能。
【多片同时编程(Simultaneously Program Multi Plane)】
对于有些新出的Nand Flash,支持同时对多个片进行编程,比如上面提到的三星的K9K8G08U0A,内部包含4片(Plane),分别叫做Plane0,Plane1,Plane2,Plane3。.由于硬件上,对于每一个Plane,都有对应的大小是2048+64=2112字节的页寄存器(Page Register),使得同时支持多个Plane编程成为可能。 K9K8G08U0A支持同时对2个Plane进行编程。不过要注意的是,只能对Plane0和Plane1或者Plane2和Plane3,同时编程,而不支持Plane0和Plane2同时编程。
【交错页编程(Interleave Page Program)】
多片同时编程,是针对一个chip里面的多个Plane来说的,
而此处的交错页编程,是指对多个chip而言的。
可以先对一个chip,假设叫chip1,里面的一页进行编程,然后此时,chip1内部就开始将数据一点点写到页里面,就出于忙的状态了,而此时可以利用这个时间,对出于就绪状态的chip2,也进行页编程,发送对应的命令后,chip2内部也就开始慢慢的写数据到存储单元里面去了,也出于忙的状态了。此时,再去检查chip1,如果编程完成了,就可以开始下一页的编程了,然后发完命令后,就让其内部慢慢的编程吧,再去检查chip2,如果也是编程完了,也就可以进行接下来的其他页的编程了。如此,交互操作chip1和chip2,就可以有效地利用时间,使得整体编程效率提高近2倍,大大提高nand flash的编程/擦写速度了。
【随机输出页内数据(Random Da
在介绍此特性之前,先要说说,与Random Da
正常情况下,我们读取数据,都是先发读命令,然后等待数据从存储单元到内部的页数据寄存器中后,我们通过不断地将RE#(Read Enale,低电平有效)置低,然后从我们开始传入的列的起始地址,一点点读出我们要的数据,直到页的末尾,当然有可能还没到页地址的末尾,就不再读了。所谓的顺序(sequential)读取也就是,根据你之前发送的列地址的起始地址开始,每读一个字节的数据出来,内部的数据指针就加1,移到下个字节的地址,然后你再读下一个字节数据,就可以读出来你要的数据了,直到读取全部的数据出来为止。
而此处的随机(random)读取,就是在你正常的顺序读取的过程中,先发一个随机读取的开始命令0x05命令,再传入你要将内部那个数据指针定位到具体什么地址,也就是2个cycle的列地址,然后再发随机读取结束命令0xE0,然后,内部那个数据地址指针,就会移动到你所制定的位置了,你接下来再读取的数据,就是从那个制定地址开始的数据了。
而nand flash数据手册里面也说了,这样的随机读取,你可以多次操作,没限制的。
请注意,上面你所传入的地址,都是列地址,也就是页内地址,也就是说,对于页大小为2K的nand flash来说,所传入的地址,应该是小于2048+64=2112的。
不过,实际在nand flash的使用中,好像这种用法很少的。绝大多数,都是顺序读取数据。
【页编程】
Nand flash的写操作叫做编程Program,编程,一般情况下,是以页为单位的。
有的Nand Flash,比如K9K8G08U0A,支持部分页编程,但是有一些限制:在同一个页内的,连续的部分页的编程,不能超过4此。一般情况下,很少使用到部分页编程,都是以页为单位进行编程操作的。
一个操作,用两个命令去实现,看起来是多余,效率不高,但是实际上,有其特殊考虑,
至少对于块擦除来说,开始的命令0x60是擦除设置命令(erase setup comman),然后传入要擦除的块地址,然后再传入擦除确认命令(erase confirm command)0xD0,以开始擦除的操作。
这种,分两步:开始设置,最后确认的命令方式,是为了避免由于外部由于无意的/未预料而产生的噪音,比如,由于某种噪音,而产生了0x60命令,此时,即使被nand flash误认为是擦除操作,但是没有之后的确认操作0xD0,nand flash就不会去擦除数据,这样使得数据更安全,不会由于噪音而误操作。
【读(read)操作过程详解】
以最简单的read操作为例,解释如何理解时序图,以及将时序图
中的要求,转化为代码。
解释时序图之前,让我们先要搞清楚,我们要做的事情:那就是,要从nand flash的某个页里面,读取我们要的数据。
要实现此功能,会涉及到几部分的知识,至少很容易想到的就是:需要用到哪些命令,怎么发这些命令,怎么计算所需要的地址,怎么读取我们要的数据等等。
下面,就一步步的解释,需要做什么,以及如何去做:
1.需要使用何种命令
首先,是要了解,对于读取数据,要用什么命令。
下面是datasheet中的命令集合:
图5.Nand Flash K9K8G08U0A的命令集合
很容易看出,我们要读取数据,要用到Read命令,该命令需要2个周期,第一个周期发0x00,第二个周期发0x30。
2.发送命令前的准备工作以及时序图各个信号的具体含义
知道了用何命令后,再去了解如何发送这些命令。
[小常识]
在开始解释前,多罗嗦一下”使能”这个词,以便有些读者和我以前一样,在听这类虽然对于某些专业人士说是属于最基本的词汇了,但是对于初次接触,或者接触不多的人来说,听多了,容易被搞得一头雾水:使能(Enable),是指使其(某个信号)有效,使其生效的意思,“使其”“能够”怎么怎么样。。。。比如,上面图中的CLE线号,是高电平有效,如果此时将其设为高电平,我们就叫做,将CLE使能,也就是使其生效的意思。
图6.Nand Flash数据读取操作的时序图
注:此图来自三星的型号K9K8G08U0A的nand flash的数据手册(datasheet)。
我们来一起看看,我在图6中的特意标注的①边上的黄色竖线。
黄色竖线所处的时刻,是在发送读操作的第一个周期的命令0x00之前的那一刻。
让我们看看,在那一刻,其所穿过好几行都对应什么值,以及进一步理解,为何要那个值。
(1)黄色竖线穿过的第一行,是CLE。还记得前面介绍命令所存使能(CLE)那个引脚吧?CLE,将CLE置1,就说明你将要通过I/O复用端口发送进入Nand Flash的,是命令,而不是地址或者其他类型的数据。只有这样将CLE置1,使其有效,才能去通知了内部硬件逻辑,你接下来将收到的是命令,内部硬件逻辑,才会将受到的命令,放到命令寄存器中,才能实现后面正确的操作,否则,不去将CLE置1使其有效,硬件会无所适从,不知道你传入的到底是数据还是命令了。
(2)而第二行,是CE#,那一刻的值是0。这个道理很简单,你既然要向Nand Flash发命令,那么先要选中它,所以,要保证CE#为低电平,使其有效,也就是片选有效。
(3)第三行是WE#,意思是写使能。因为接下来是往nand Flash里面写命令,所以,要使得WE#有效,所以设为低电平。
(4)第四行,是ALE是低电平,而ALE是高电平有效,此时意思就是使其无效。而对应地,前面介绍的,使CLE有效,因为将要数据的是命令,而不是地址。如果在其他某些场合,比如接下来的要输入地址的时候,就要使其有效,而使CLE无效了。
(5)第五行,RE#,此时是高电平,无效。可以看到,知道后面低6阶段,才变成低电平,才有效,因为那时候,要发生读取命令,去读取数据。
(6)第六行,就是我们重点要介绍的,复用的输入输出I/O端口了,此刻,还没有输入数据,接下来,在不同的阶段,会输入或输出不同的数据/地址。
(7)第七行,R/B#,高电平,表示R(Ready)/就绪,因为到了后面的第5阶段,硬件内部,在第四阶段,接受了外界的读取命令后,把该页的数据一点点送到页寄存器中,这段时间,属于系统在忙着干活,属于忙的阶段,所以,R/B#才变成低,表示Busy忙的状态的。
介绍了时刻①的各个信号的值,以及为何是这个值之后,相信,后面的各个时刻,对应的不同信号的各个值,大家就会自己慢慢分析了,也就容易理解具体的操作顺序和原理了。
3.如何计算出,我们要传入的地址
在介绍具体读取数据的详细流程之前,还要做一件事,那就是,先要搞懂我们要访问的地址,以及这些地址,如何分解后,一点点传入进去,使得硬件能识别才行。
此处还是以K9K8G08U0A为例,此nand flash,一共有8192个块,每个块内有64页,每个页是2K+64 Bytes,假设,我们要访问其中的第7000个块中的第25页中的1208字节处的地址,此时,我们就要先把具体的地址算出来:
物理地址=块大小×块号+页大小×页号+页内地址=7000×128K+64×2K+1208=0x36B204B8,接下来,我们就看看,怎么才能把这个实际的物理地址,转化为nand Flash所要求的格式。
在解释地址组成之前,先要来看看其datasheet中关于地址周期的介绍:
图7 Nand Flash的地址周期组成
结合图7和图5中的2,3阶段,我们可以看出,此nand flash地址周期共有5个,2个列(Column)周期,3个行(Row)周期。而对于对应地,我们可以看出,实际上,列地址A0~A10,就是页内地址,地址范围是从0到2047,而对出的A11,理论上可以表示2048~4095,但是实际上,我们最多也只用到了2048~2011,用于表示页内的oob区域,其大小是64字节。
对应地,A12~A30,称作页号,页的号码,可以定位到具体是哪一个页。而其中,A18~A30,表示对应的块号,即属于哪个块。
简单解释完了地址组成,那么就很容易分析上面例子中的地址了:
0x36B204B8 = 0011 0110 1011 0010 0000 0100 1011 1000,分别分配到5个地址周期就是:
1st 周期,A7~A0 :1011 1000 = 0x B8
2nd周期,A11~A8 :0000 0100 = 0x04
3rd周期,A19~A12 :0010 0000 = 0x20
4th周期,A27~A20 :0110 1011 = 0x6B
5th周期,A30~A28 :0000 0011 = 0x03
注意,与图7中对应的,*L,意思是地电平,由于未用到那些位,datasheet中强制要求设为0,所以,才有上面的2nd周期中的高4位是0000.其他的A30之后的位也是类似原理,都是0。
因此,接下来要介绍的,我们要访问第7000个块中的第25页中的1208字节处的话,所要传入的地址就是分5个周期,分别传入两个列地址的:0xB8,0x04,然后再传3个行地址的:0x20,0x6B,0x03,这样硬件才能识别。
4.读操作过程的解释
准备工作终于完了,下面就可以开始解释说明,对于读操作的,上面图中标出来的,1-6个阶段,具体是什么含义。
(1) 操作准备阶段:此处是读(Read)操作,所以,先发一个图5中读命令的第一个阶段的0x00,表示,让硬件先准备一下,接下来的操作是读。
(2) 发送两个周期的列地址。也就是页内地址,表示,我要从一个页的什么位置开始读取数据。
(3) 接下来再传入三个行地址。对应的也就是页号。
(4) 然后再发一个读操作的第二个周期的命令0x30。接下来,就是硬件内部自己的事情了。
(5) Nand Flash内部硬件逻辑,负责去按照你的要求,根据传入的地址,找到哪个块中的哪个页,然后把整个这一页的数据,都一点点搬运到页缓存中去。而在此期间,你所能做的事,也就只需要去读取状态寄存器,看看对应的位的值,也就是R/B#那一位,是1还是0,0的话,就表示,系统是busy,仍在”忙“(着读取数据),如果是1,就说系统活干完了,忙清了,已经把整个页的数据都搬运到页缓存里去了,你可以接下来读取你要的数据了。
对于这里。估计有人会问了,这一个页一共2048+64字节,如果我传入的页内地址,就像上面给的1208一类的值,只是想读取1028到2011这部分数据,而不是页开始的0地址整个页的数据,那么内部硬件却读取整个页的数据出来,岂不是很浪费吗?答案是,的确很浪费,效率看起来不高,但是实际就是这么做的,而且本身读取整个页的数据,相对时间并不长,而且读出来之后,内部数据指针会定位到你刚才所制定的1208的那个位置。
(6) 接下来,就是你“窃取“系统忙了半天之后的劳动成果的时候了,呵呵。通过先去Nand Flash的控制器中的数据寄存器中写入你要读取多少个字节(byte)/字(word),然后就可以去Nand Flash的控制器的FIFO中,一点点读取你要的数据了。
至此,整个Nand Flash的读操作就完成了。
对于其他操作,可以根据我上面的分析,一点点自己去看datasheet,根据里面的时序图去分析具体的操作过程,然后对照代码,会更加清楚具体是如何实现的。
【Flash的类型】
Flash的类型主要分两种,nand flash和nor flash。
除了网上最流行的这个解释之外:
再多说几句:
1.nor的成本相对高,具体读写数据时候,不容易出错。总体上,比较适合应用于存储少量的代码。
2.Nand flash相对成本低。使用中数据读写容易出错,所以一般都需要有对应的软件或者硬件的数据校验算法,统称为ECC。由于相对来说,容量大,价格便宜,因此适合用来存储大量的数据。其在嵌入式系统中的作用,相当于PC上的硬盘,用于存储大量数据。
所以,一个常见的应用组合就是,用小容量的Nor Flash存储启动代码,比如uboot,系统启动后,初始化对应的硬件,包括SDRAM等,然后将Nand Flash上的Linux 内核读取到内存中,做好该做的事情后,就跳转到SDRAM中去执行内核了,然后内核解压(如果是压缩内核的话,否则就直接运行了)后,开始运行,在Linux内核启动最后,去Nand Flash上,挂载根文件,比如jffs2,yaffs2等,挂载完成,运行初始化脚本,启动consle交互,才运行你通过console和内核交互。至此完成整个系统启动过程。
而Nor Flash就分别存放的是Uboot,Nand Flash存放的是Linux的内核镜像和根文件系统,以及余下的空间分成一个数据区。
Nor flash,有类似于dram之类的地址总线,因此可以直接和CPU相连,CPU可以直接通过地址总线对nor flash进行访问,而nand flash没有这类的总线,只有IO接口,只能通过IO接口发送命令和地址,对nand flash内部数据进行访问。相比之下,nor flash就像是并行访问,nand flash就是串行访问,所以相对来说,前者的速度更快些。
但是由于物理制程/制造方面的原因,导致nor 和nand在一些具体操作方面的特性不同:
|
NOR |
NAND |
(备注) |
接口 |
总线 |
I/O接口 |
这个两者最大的区别 |
单个cell大小 |
大 |
小 |
|
单个Cell成本 |
高 |
低 |
|
读耗时 |
快 |
慢 |
|
单字节的编程时间 |
快 |
慢 |
|
多字节的编程时间 |
慢 |
快 |
|
擦除时间 |
慢 |
快 |
|
功耗 |
高 |
低,但是需要额外的RAM |
|
是否可以执行代码 |
是 |
不行, 但是一些新的芯片,可以在第一页之外执行一些小的loader(1) |
即是否允许,芯片内执行(XIP, eXecute In Place) (2) |
位反转(Bit twiddling/bit flip) |
几乎无限制 |
1-4次,也称作 “部分页编程限制” |
也就是数据错误,0->1或1->0 |
在芯片出厂时候是否允许坏块 |
不允许 |
允许 |
|
表3 Nand Flash 和 Nor Flash的区别
1. 理论上是可以的,而且也是有人验证过可以的,只不过由于nand flash的物理特性,不能完全保证所读取的数据/代码是正确的,实际上,很少这么用而已。因为,如果真是要用到nand flash做XIP,那么除了读出速度慢之外,还要保证有数据的校验,以保证读出来的,将要执行的代码/数据,是正确的。否则,系统很容易就跑飞了。。。
2. 芯片内执行(XIP, eXecute In Place):
http://hi.baidu.com/serial_story/blog/item/adb20a2a3f8ffe3c5243c1df.html
【Nand Flash的种类】
具体再分,又可以分为
1)Bare NAND chips:裸片,单独的nand 芯片
2)SmartMediaCards: =裸片+一层薄塑料,常用于数码相机和MP3播放器中。之所以称smart,是由于其软件smart,而不是硬件本身有啥smart之处。^_^
3)DiskOnChip:裸片+glue logic,glue logic=硬件ECC产生器+用于静态的nand 芯片控制的寄存器+直接访问一小片地址窗口,那块地址中包含了引导代码的stub桩,其可以从nand flash中拷贝真正的引导代码。
【spare area/oob】
Nand由于最初硬件设计时候考虑到,额外的错误校验等需要空间,专门对应每个页,额外设计了叫做spare area空区域,在其他地方,比如jffs2文件系统中,也叫做oob(out of band)数据。
其具体用途,总结起来有:
1. 标记是否是坏快
2. 存储ECC数据
3. 存储一些和文件系统相关的数据,如jffs2就会用到这些空间存储一些特定信息,yaffs2文件系统,会在oob中,存放很多和自己文件系统相关的信息。
2. 软件方面
如果想要在Linux下编写Nand Flash驱动,那么就先要搞清楚Linux下,关于此部分的整个框架。弄明白,系统是如何管理你的nand flash的,以及,系统都帮你做了那些准备工作,而剩下的,驱动底层实现部分,你要去实现哪些功能,才能使得硬件正常工作起来。
【内存技术设备,MTD(Memory Technology Device)】
MTD,是Linux的存储设备中的一个子系统。其设计此系统的目的是,对于内存类的设备,提供一个抽象层,一个接口,使得对于硬件驱动设计者来说,可以尽量少的去关心存储格式,比如FTL,FFS2等,而只需要去提供最简单的底层硬件设备的读/写/擦除函数就可以了。而对于数据对于上层使用者来说是如何表示的,硬件驱动设计者可以不关心,而MTD存储设备子系统都帮你做好了。
对于MTD字系统的好处,简单解释就是,他帮助你实现了,很多对于以前或者其他系统来说,本来也是你驱动设计者要去实现的很多功能。换句话说,有了MTD,使得你设计Nand Flash的驱动,所要做的事情,要少很多很多,因为大部分工作,都由MTD帮你做好了。
当然,这个好处的一个“副作用”就是,使得我们不了解的人去理解整个Linux驱动架构,以及MTD,变得更加复杂。但是,总的说,觉得是利远远大于弊,否则,就不仅需要你理解,而且还是做更多的工作,实现更多的功能了。
此外,还有一个重要的原因,那就是,前面提到的nand flash和普通硬盘等设备的特殊性:
有限的通过出复用来实现输入输出命令和地址/数据等的IO接口,最小单位是页而不是常见的bit,写前需擦除等,导致了这类设备,不能像平常对待硬盘等操作一样去操作,只能采取一些特殊方法,这就诞生了MTD设备的统一抽象层。
MTD,将nand flash,nor flash和其他类型的flash等设备,统一抽象成MTD设备来管理,根据这些设备的特点,上层实现了常见的操作函数封装,底层具体的内部实现,就需要驱动设计者自己来实现了。具体的内部硬件设备的读/写/擦除函数,那就是你必须实现的了。
HARD drives |
MTD device |
连续的扇区 |
连续的可擦除块 |
扇区都很小(512B,1024B) |
可擦除块比较大 (32KB,128KB) |
主要通过两个操作对其维护操作:读扇区,写扇区 |
主要通过三个操作对其维护操作:从擦除块中读,写入擦除块,擦写可擦除块 |
坏快被重新映射,并且被硬件隐藏起来了(至少是在如今常见的LBA硬盘设备中是如此) |
坏的可擦除块没有被隐藏,软件中要处理对应的坏块问题。 |
HDD扇区没有擦写寿命超出的问题。 |
可擦除块是有擦除次数限制的,大概是104-105次. |
表4.MTD设备和硬盘设备之间的区别
多说一句,关于MTD更多的内容,感兴趣的,去附录中的MTD的主页去看。
关于mtd设备驱动,感兴趣的可以去参考
那里,算是比较详细地介绍了整个流程,方便大家理解整个mtd框架和nand flash驱动。
【Nand flash驱动工作原理】
在介绍具体如何写Nand Flash驱动之前,我们先要了解,大概的,整个系统,和Nand Flash相关的部分的驱动工作流程,这样,对于后面的驱动实现,才能更加清楚机制,才更容易实现,否则就是,即使写完了代码,也还是没搞懂系统是如何工作的了。
让我们以最常见的,Linux内核中已经有的三星的Nand Flash驱动,来解释Nand Flash驱动具体流程和原理。
此处是参考2.6.29版本的Linux源码中的\drivers\mtd\nand\s3c2410.c,以2410为例。
1. 在nand flash驱动加载后,第一步,就是去调用对应的init函数,s3c2410_nand_init,去将在nand flash驱动注册到Linux驱动框架中。
2. 驱动本身,真正开始,是从probe函数,s3c2410_nand_probe->s3c24xx_nand_probe,
在probe过程中,去用clk_enable打开nand flash控制器的clock时钟,用request_mem_region去申请驱动所需要的一些内存等相关资源。然后,在s3c2410_nand_inithw中,去初始化硬件相关的部分,主要是关于时钟频率的计算,以及启用nand flash控制器,使得硬件初始化好了,后面才能正常工作。
3. 需要多解释一下的,是这部分代码:
for (setno = 0; setno < nr_sets; setno++, nmtd++) {
pr_debug("initialising set %d (%p, info %p)\n", setno, nmtd, info);
/* 调用init chip去挂载你的nand 驱动的底层函数到nand flash的结构体中,以及设置对应的ecc mode,挂载ecc相关的函数 */
s3c2410_nand_init_chip(info, nmtd, sets);
/* scan_ident,扫描nand 设备,设置nand flash的默认函数,获得物理设备的具体型号以及对应各个特性参数,这部分算出来的一些值,对于nand flash来说,是最主要的参数,比如nand falsh的芯片的大小,块大小,页大小等。 */
nmtd->scan_res = nand_scan_ident(&nmtd->mtd,
(sets) ? sets->nr_chips : 1);
if (nmtd->scan_res == 0) {
s3c2410_nand_update_chip(info, nmtd);
/* scan tail,从名字就可以看出来,是扫描的后一阶段,此时,经过前面的scan_ident,我们已经获得对应nand flash的硬件的各个参数,然后就可以在scan tail中,根据这些参数,去设置其他一些重要参数,尤其是ecc的layout,即ecc是如何在oob中摆放的,最后,再去进行一些初始化操作,主要是根据你的驱动,如果没有实现一些函数的话,那么就用系统默认的。 */
nand_scan_tail(&nmtd->mtd);
/* add partion,根据你的nand flash的分区设置,去分区 */
s3c2410_nand_add_partition(info, nmtd, sets);
}
if (sets != NULL)
sets++;
}
4. 等所有的参数都计算好了,函数都挂载完毕,系统就可以正常工作了。
上层访问你的nand falsh中的数据的时候,通过MTD层,一层层调用,最后调用到你所实现的那些底层访问硬件数据/缓存的函数中。
【Linux下nand flash驱动编写步骤简介】
关于上面提到的,在nand_scan_tail的时候,系统会根据你的驱动,如果没有实现一些函数的话,那么就用系统默认的。如果实现了自己的函数,就用你的。
估计很多人就会问了,那么到底我要实现哪些函数呢,而又有哪些是可以不实现,用系统默认的就可以了呢。
此问题的,就是我们下面要介绍的,也就是,你要实现的,你的驱动最少要做哪些工作,才能使整个nand flash工作起来。
1. 对于驱动框架部分
其实,要了解,关于驱动框架部分,你所要做的事情的话,只要看看三星的整个nand flash驱动中的这个结构体,就差不多了:
static struct platform_driver s3c2410_nand_driver = {
.probe = s3c2410_nand_probe,
.remove = s3c2410_nand_remove,
.suspend = s3c24xx_nand_suspend,
.resume = s3c24xx_nand_resume,
.driver = {
.name = "s3c2410-nand",
.owner = THIS_MODULE,
},
};
对于上面这个结构体,没多少要解释的。从名字,就能看出来:
(1)probe就是系统“探测”,就是前面解释的整个过程,这个过程中的多数步骤,都是和你自己的nand flash相关的,尤其是那些硬件初始化部分,是你必须要自己实现的。
(2)remove,就是和probe对应的,“反初始化”相关的动作。主要是释放系统相关资源和关闭硬件的时钟等常见操作了。
(3)suspend和resume,对于很多没用到电源管理的情况下,至少对于我们刚开始写基本的驱动的时候,可以不用关心,放个空函数即可。
2. 对于nand flash底层操作实现部分
而对于底层硬件操作的有些函数,总体上说,都可以在上面提到的s3c2410_nand_init_chip中找到:
static void s3c2410_nand_init_chip(struct s3c2410_nand_info *info,
struct s3c2410_nand_mtd *nmtd,
struct s3c2410_nand_set *set)
{
struct nand_chip *chip = &nmtd->chip;
void __iomem *regs = info->regs;
chip->write_buf = s3c2410_nand_write_buf;
chip->read_buf = s3c2410_nand_read_buf;
chip->select_chip = s3c2410_nand_select_chip;
chip->chip_delay = 50;
chip->priv = nmtd;
chip->options = 0;
chip->controller = &info->controller;
switch (info->cpu_type) {
case TYPE_S3C2410:
/* nand flash控制器中,一般都有对应的数据寄存器,用于给你往里面写数据,表示将要读取或写入多少个字节(byte,u8)/字(word,u32) ,所以,此处,你要给出地址,以便后面的操作所使用 */
chip->IO_ADDR_W = regs + S3C2410_NFDATA;
info->sel_reg = regs + S3C2410_NFCONF;
info->sel_bit = S3C2410_NFCONF_nFCE;
chip->cmd_ctrl = s3c2410_nand_hwcontrol;
chip->dev_ready = s3c2410_nand_devready;
break;
。。。。。。
}
chip->IO_ADDR_R = chip->IO_ADDR_W;
nmtd->info = info;
nmtd->mtd.priv = chip;
nmtd->mtd.owner = THIS_MODULE;
nmtd->set = set;
if (hardware_ecc) {
chip->ecc.calculate = s3c2410_nand_calculate_ecc;
chip->ecc.correct = s3c2410_nand_correct_da
/* 此处,多数情况下,你所用的Nand Flash的控制器,都是支持硬件ECC的,所以,此处设置硬件ECC(HW_ECC) ,也是充分利用硬件的特性,而如果此处不用硬件去做的ECC的话,那么下面也会去设置成NAND_ECC_SOFT,系统会用默认的软件去做ECC校验,相比之下,比硬件ECC的效率就低很多,而你的nand flash的读写,也会相应地要慢不少*/
chip->ecc.mode = NAND_ECC_HW;
switch (info->cpu_type) {
case TYPE_S3C2410:
chip->ecc.hwctl = s3c2410_nand_enable_hwecc;
chip->ecc.calculate = s3c2410_nand_calculate_ecc;
break;
。。。。。
}
} else {
chip->ecc.mode = NAND_ECC_SOFT;
}
if (set->ecc_layout != NULL)
chip->ecc.layout = set->ecc_layout;
if (set->disable_ecc)
chip->ecc.mode = NAND_ECC_NONE;
}
而我们要实现的底层函数,也就是上面蓝色标出来的一些函数而已:
(1)s3c2410_nand_write_buf 和 s3c2410_nand_read_buf:这是两个最基本的操作函数,其功能,就是往你的nand flash的控制器中的FIFO读写数据。一般情况下,是MTD上层的操作,比如要读取一页的数据,那么在发送完相关的读命令和等待时间之后,就会调用到你底层的read_buf,去nand Flash的FIFO中,一点点把我们要的数据,读取出来,放到我们制定的内存的缓存中去。写操作也是类似,将我们内存中的数据,写到Nand Flash的FIFO中去。具体的数据流向,参考上面的图4。
(2)s3c2410_nand_select_chip : 实现Nand Flash的片选。
(3)s3c2410_nand_hwcontrol:给底层发送命令或地址,或者设置具体操作的模式,都是通过此函数。
(4)s3c2410_nand_devready:Nand Flash的一些操作,比如读一页数据,写入(编程)一页数据,擦除一个块,都是需要一定时间的,在命发送完成后,就是硬件开始忙着工作的时候了,而硬件什么时候完成这些操作,什么时候不忙了,变就绪了,就是通过这个函数去检查状态的。一般具体实现都是去读硬件的一个状态寄存器,其中某一位是否是1,对应着是出于“就绪/不忙”还是“忙”的状态。这个寄存器,也就是我们前面分析时序图中的R/B#。
(5)s3c2410_nand_enable_hwecc: 在硬件支持的前提下,前面设置了硬件ECC的话,要实现这个函数,用于每次在读写操作前,通过设置对应的硬件寄存器的某些位,使得启用硬件ECC,这样在读写操作完成后,就可以去读取硬件校验产生出来的ECC数值了。
(6)s3c2410_nand_calculate_ecc:如果是上面提到的硬件ECC的话,就不用我们用软件去实现校验算法了,而是直接去读取硬件产生的ECC数值就可以了。
(7)s3c2410_nand_correct_da
当然,除了这些你必须实现的函数之外,在你更加熟悉整个框架之后,你可以根据你自己的nand flash的特点,去实现其他一些原先用系统默认但是效率不高的函数,而用自己的更高效率的函数替代他们,以提升你的nand flash的整体性能和效率。
【引用文章】
http://hi.baidu.com/serial_story/blog/item/3f1635d1dc041cd7562c84a1.html
2. Samsung的型号为K9G8G08U0M的Nand Flash的数据手册
要下载数据手册,可以去这里介绍的网站下载:
samsung 4K pagesize SLC Nand Flash K9F8G08U0M datasheet + 推荐一个datasheet搜索的网站
http://hi.baidu.com/serial_story/blog/item/7f25a03def1de309bba167c8.html
http://hi.baidu.com/serial_story/blog/item/f06db3546eced11a3b29356c.html
4. Memory Technology Device (MTD) Subsystem for Linux.
http://www.linux-mtd.infradead.org/index.html
看了<<Linux MTD源代码分析>>后对以MTD的分层结构以及各层的分工情况有了大致的了解,然而各层之间是如何进行对话的呢,对于这个问题,<<Linux MTD源代码分析>>上没有详细的去说明。
小弟抽空研究了一下,打算从下到上,在从上到下,分两条主线来研究一下MTD原始设备与FLASH硬件驱动的对话(MTD原始设备与更上层的对话留待以后再研究)。
以下是第一部分,从下到上的介绍FLASH硬件驱动与MTD原始设备是如何建立联系的。
1、首先从入口函数开始:
static int s3c24xx_nand_probe(struct device *dev, int is_s3c2440)
{
struct platform_device *pdev = to_platform_device(dev);
struct s3c2410_platform_nand *plat = to_nand_plat(dev);
//获取nand flash配置用结构体数据(dev.c中定义,详细见附录部分)
struct s3c2410_nand_info *info;
struct s3c2410_nand_mtd *nmtd;
struct s3c2410_nand_set *sets;
struct resource *res;
int err = 0;
int size;
int nr_sets;
int setno;
pr_debug("s3c2410_nand_probe(%p)\n", dev);
info = kmalloc(sizeof(*info), GFP_KERNEL);
if (info == NULL) {
printk(KERN_ERR PFX "no memory for flash info\n");
err = -ENOMEM;
goto exit_error;
}
memzero(info, sizeof(*info));
dev_set_drvdata(dev, info); //以后有用
spin_lock_init(&info->controller.lock); //初始化自旋锁
init_waitqueue_head(&info->controller.wq); //初始化等待队列
/* get the clock source and enable it */
info->clk = clk_get(dev, "nand");
if (IS_ERR(info->clk)) {
printk(KERN_ERR PFX "failed to get clock");
err = -ENOENT;
goto exit_error;
}
clk_use(info->clk);
clk_enable(info->clk);
/* allocate and map the resource */
/* currently we assume we have the one resource */
res = pdev->resource; //提取dev.c中定义的与设备相关的资源
size = res->end - res->start + 1;
info->area = request_mem_region(res->start, size, pdev->name);
if (info->area == NULL) {
printk(KERN_ERR PFX "cannot reserve register region\n");
err = -ENOENT;
goto exit_error;
}
info->device = dev;
info->platform = plat; //保存好struct s3c2410_platform_nand结构数据
info->regs = ioremap(res->start, size);//映射nand flash用到的寄存器
info->is_s3c2440 = is_s3c2440;
if (info->regs == NULL) {
printk(KERN_ERR PFX "cannot reserve register region\n");
err = -EIO;
goto exit_error;
}
printk(KERN_INFO PFX "mapped registers at %p\n", info->regs);
/* initialise the hardware */
err = s3c2410_nand_inithw(info, dev);
//初始化s3c2410 nand flash控制,主要是配置S3C2410_NFCONF寄存器
if (err != 0)
goto exit_error;
sets = (plat != NULL) ? plat->sets : NULL;
nr_sets = (plat != NULL) ? plat->nr_sets : 1;
info->mtd_count = nr_sets;
//我的板上只有一块nand flash,配置信息见plat-sets,数目为1。
/* allocate our information */
size = nr_sets * sizeof(*info->mtds);
info->mtds = kmalloc(size, GFP_KERNEL);
if (info->mtds == NULL) {
printk(KERN_ERR PFX "failed to allocate mtd storage\n");
err = -ENOMEM;
goto exit_error;
}
memzero(info->mtds, size);
/* initialise all possible chips */
nmtd = info->mtds;
for (setno = 0; setno < nr_sets; setno++, nmtd++) {
pr_debug("initialising set %d (%p, info %p)\n",
setno, nmtd, info);
s3c2410_nand_init_chip(info, nmtd, sets);
nmtd->scan_res = nand_scan(&nmtd->mtd,
(sets) ? sets->nr_chips : 1);//为什么使用set->nr_chips(还没配置的东西)?
if (nmtd->scan_res == 0) {
s3c2410_nand_add_partition(info, nmtd, sets);
}
if (sets != NULL)
sets++;
}
pr_debug("initialised ok\n");
return 0;
exit_error:
s3c2410_nand_remove(dev);
if (err == 0)
err = -EINVAL;
return err;
}
//初始化代表一片flash的struct nand_chip结构
static void s3c2410_nand_init_chip(struct s3c2410_nand_info *info,
struct s3c2410_nand_mtd *nmtd,
struct s3c2410_nand_set *set)
{
struct nand_chip *chip = &nmtd->chip;
chip->IO_ADDR_R = info->regs + S3C2410_NFDATA; //读地址
chip->IO_ADDR_W = info->regs + S3C2410_NFDATA; //写地址
chip->hwcontrol = s3c2410_nand_hwcontrol;
chip->dev_ready = s3c2410_nand_devready; //ready状态查询
chip->write_buf = s3c2410_nand_write_buf; //写函数
chip->read_buf = s3c2410_nand_read_buf; //读函数
chip->select_chip = s3c2410_nand_select_chip; //片选函数
chip->chip_delay = 50;
chip->priv = nmtd;
chip->options = 0;
chip->controller = &info->controller;
if (info->is_s3c2440) {
chip->IO_ADDR_R = info->regs + S3C2440_NFDATA;
chip->IO_ADDR_W = info->regs + S3C2440_NFDATA;
chip->hwcontrol = s3c2440_nand_hwcontrol;
}
nmtd->info = info;
nmtd->mtd.priv = chip;
//nand_scan函数中会调用struct nand_chip *this = mtd->priv取出该struct nand_chip结构
nmtd->set = set;
if (hardware_ecc) {
chip->correct_data = s3c2410_nand_correct_data;
chip->enable_hwecc = s3c2410_nand_enable_hwecc;
chip->calculate_ecc = s3c2410_nand_calculate_ecc;
chip->eccmode = NAND_ECC_HW3_512;
chip->autooob = &nand_hw_eccoob;
if (info->is_s3c2440) {
chip->enable_hwecc = s3c2440_nand_enable_hwecc;
chip->calculate_ecc = s3c2440_nand_calculate_ecc;
}
} else {
chip->eccmode = NAND_ECC_SOFT; //ECC的类型
}
}
/* command and control functions
*
* Note, these all use tglx's method of changing the IO_ADDR_W field
* to make the code simpler, and use the nand layer's code to issue the
* command and address sequences via the proper IO ports.
*
*/
static void s3c2410_nand_hwcontrol(struct mtd_info *mtd, int cmd)
{
struct s3c2410_nand_info *info = s3c2410_nand_mtd_toinfo(mtd);
struct nand_chip *chip = mtd->priv;
switch (cmd) {
case NAND_CTL_SETNCE:
case NAND_CTL_CLRNCE:
printk(KERN_ERR "%s: called for NCE\n", __FUNCTION__);
break;
case NAND_CTL_SETCLE:
chip->IO_ADDR_W = info->regs + S3C2410_NFCMD;//写命令
break;
case NAND_CTL_SETALE:
chip->IO_ADDR_W = info->regs + S3C2410_NFADDR;//写地址
break;
/* NAND_CTL_CLRCLE: */
/* NAND_CTL_CLRALE: */
default:
chip->IO_ADDR_W = info->regs + S3C2410_NFDATA;//写数据
break;
}
}
/* s3c2410_nand_devready()
*
* returns 0 if the nand is busy, 1 if it is ready
*/
static int s3c2410_nand_devready(struct mtd_info *mtd)
{
struct s3c2410_nand_info *info = s3c2410_nand_mtd_toinfo(mtd);
if (info->is_s3c2440)
return readb(info->regs + S3C2440_NFSTAT) & S3C2440_NFSTAT_READY;
return readb(info->regs + S3C2410_NFSTAT) & S3C2410_NFSTAT_BUSY;//返回nand flash都忙标志
}
static void s3c2410_nand_write_buf(struct mtd_info *mtd,
const u_char *buf, int len)
{
struct nand_chip *this = mtd->priv;
writesb(this->IO_ADDR_W, buf, len);//写操作
}
static void s3c2410_nand_read_buf(struct mtd_info *mtd, u_char *buf, int len)
{
struct nand_chip *this = mtd->priv;
readsb(this->IO_ADDR_R, buf, len);//读操作
}
/* select chip */
/*
* 根据chip都值设置nand flash都片选信号:
* chip = -1 -- 禁用nand flash
* chip !=-1 -- 选择对应的nand flash
*/
static void s3c2410_nand_select_chip(struct mtd_info *mtd, int chip)
{
struct s3c2410_nand_info *info;
struct s3c2410_nand_mtd *nmtd;
struct nand_chip *this = mtd->priv;
void __iomem *reg;
unsigned long cur;
unsigned long bit;
nmtd = this->priv;
info = nmtd->info;
bit = (info->is_s3c2440) ? S3C2440_NFCONT_nFCE : S3C2410_NFCONF_nFCE;
reg = info->regs+((info->is_s3c2440) ? S3C2440_NFCONT:S3C2410_NFCONF);
cur = readl(reg);
if (chip == -1) {
cur |= bit;
} else {
if (nmtd->set != NULL && chip > nmtd->set->nr_chips) {
printk(KERN_ERR PFX "chip %d out of range\n", chip);
return;
}
if (info->platform != NULL) {
if (info->platform->select_chip != NULL)
(info->platform->select_chip)(nmtd->set, chip);
}
cur &= ~bit;
}
writel(cur, reg);
}
注:
s3c2410_nand_init_chip填充struct nand_chip的一部分成员,nand_scan以通用nand flash的标准进行检测,并填充struct nand_chip的其它成员,必要时根据检测结果进行取舍。
int nand_scan (struct mtd_info *mtd, int maxchips)
{
int i, nand_maf_id, nand_dev_id, busw, maf_id;
struct nand_chip *this = mtd->priv; //取出struct nand_chip结构
/* Get buswidth to select the correct functions*/
busw = this->options & NAND_BUSWIDTH_16; //nand flash的位宽
/* check for proper chip_delay setup, set 20us if not */
if (!this->chip_delay)
this->chip_delay = 20;
/* check, if a user supplied command function given */
if (this->cmdfunc == NULL) //填充命令函数
this->cmdfunc = nand_command;
/* check, if a user supplied wait function given */
if (this->waitfunc == NULL) //填充等待函数
this->waitfunc = nand_wait;
if (!this->select_chip) //s3c2410_nand_init_chip中已定义
this->select_chip = nand_select_chip;
if (!this->write_byte) //使用默认的
this->write_byte = busw ? nand_write_byte16 : nand_write_byte;
if (!this->read_byte) //使用默认的
this->read_byte = busw ? nand_read_byte16 : nand_read_byte;
if (!this->write_word) //使用默认的
this->write_word = nand_write_word;
if (!this->read_word) //使用默认的
this->read_word = nand_read_word;
if (!this->block_bad) //使用默认的
this->block_bad = nand_block_bad;
if (!this->block_markbad) //使用默认的
this->block_markbad = nand_default_block_markbad;
if (!this->write_buf) //s3c2410_nand_init_chip中已定义
this->write_buf = busw ? nand_write_buf16 : nand_write_buf;
if (!this->read_buf) //s3c2410_nand_init_chip中已定义
this->read_buf = busw ? nand_read_buf16 : nand_read_buf;
if (!this->verify_buf) //使用默认的
this->verify_buf = busw ? nand_verify_buf16 : nand_verify_buf;
if (!this->scan_bbt) //使用默认的
this->scan_bbt = nand_default_bbt;
/* Select the device */
this->select_chip(mtd, 0); //片选,可惜在s3c2410 nand flash控制器中此操作为空
/* Send the command for reading device ID */
this->cmdfunc (mtd, NAND_CMD_READID, 0x00, -1);//发送读ID命令
/* Read manufacturer and device IDs */
nand_maf_id = this->read_byte(mtd); //读取生产商ID
nand_dev_id = this->read_byte(mtd); //读取设备ID
/* Print and store flash device information */
for (i = 0; nand_flash_ids[i].name != NULL; i++) {
//保存着nand flash资料的nand_flash_ids表在include/linux/mtd/nand_ids.c文件中,详细见附录
if (nand_dev_id != nand_flash_ids[i].id) //比较设备ID
continue;
if (!mtd->name) mtd->name = nand_flash_ids[i].name; //填充设备名
this->chipsize = nand_flash_ids[i].chipsize << 20; //填充设备大小
/* New devices have all the information in additional id bytes */
if (!nand_flash_ids[i].pagesize) {
int extid;
/* The 3rd id byte contains non relevant data ATM */
extid = this->read_byte(mtd);
/* The 4th id byte is the important one */
extid = this->read_byte(mtd);
/* Calc pagesize */
mtd->oobblock = 1024 << (extid & 0x3);
extid >>= 2;
/* Calc oobsize */
mtd->oobsize = (8 << (extid & 0x03)) * (mtd->oobblock / 512);
extid >>= 2;
/* Calc blocksize. Blocksize is multiples of 64KiB */
mtd->erasesize = (64 * 1024) << (extid & 0x03);
extid >>= 2;
/* Get buswidth information */
busw = (extid & 0x01) ? NAND_BUSWIDTH_16 : 0;
} else {
/* Old devices have this data hardcoded in the
* device id table */
mtd->erasesize = nand_flash_ids[i].erasesize; //填充檫除单元大小(16k)
mtd->oobblock = nand_flash_ids[i].pagesize; //填充页大小(512)
mtd->oobsize = mtd->oobblock / 32; //oob大小(512/32=16)
busw = nand_flash_ids[i].options & NAND_BUSWIDTH_16;//获取nand flash表中定义的位宽
}
/* Try to identify manufacturer */ //比较生产商ID
for (maf_id = 0; nand_manuf_ids[maf_id].id != 0x0; maf_id++) {
if (nand_manuf_ids[maf_id].id == nand_maf_id)
break;
}
/* Check, if buswidth is correct. Hardware drivers should set
* this correct ! */
/用户定义的位宽与芯片实际的位宽不一致,取消nand flash的片选
if (busw != (this->options & NAND_BUSWIDTH_16)) {
printk (KERN_INFO "NAND device: Manufacturer ID:"
" 0x%02x, Chip ID: 0x%02x (%s %s)\n", nand_maf_id, nand_dev_id,
nand_manuf_ids[maf_id].name , mtd->name);
printk (KERN_WARNING
"NAND bus width %d instead %d bit\n",
(this->options & NAND_BUSWIDTH_16) ? 16 : 8,
busw ? 16 : 8);
this->select_chip(mtd, -1);//在s3c2410 nand flash控制器驱动中,此操作为空操作
return 1;
}
/* Calculate the address shift from the page size */
//计算页、可檫除单元、nand flash大小的偏移值
this->page_shift = ffs(mtd->oobblock) - 1;
this->bbt_erase_shift = this->phys_erase_shift = ffs(mtd->erasesize) - 1;
this->chip_shift = ffs(this->chipsize) - 1;
/* Set the bad block position */
//标注此nand flash为大页还是小页?
this->badblockpos = mtd->oobblock > 512 ?
NAND_LARGE_BADBLOCK_POS : NAND_SMALL_BADBLOCK_POS;
/* Get chip options, preserve non chip based options */
//用户没指定的选项从nand flash表中获取补上
this->options &= ~NAND_CHIPOPTIONS_MSK;
this->options |= nand_flash_ids[i].options & NAND_CHIPOPTIONS_MSK;
/* Set this as a default. Board drivers can override it, if neccecary */
this->options |= NAND_NO_AUTOINCR;
/* Check if this is a not a samsung device. Do not clear the options
* for chips which are not having an extended id.
*/
if (nand_maf_id != NAND_MFR_SAMSUNG && !nand_flash_ids[i].pagesize)
this->options &= ~NAND_SAMSUNG_LP_OPTIONS;
/* Check for AND chips with 4 page planes */
if (this->options & NAND_4PAGE_ARRAY)
this->erase_cmd = multi_erase_cmd;
else
this->erase_cmd = single_erase_cmd;
/* Do not replace user supplied command function ! */
if (mtd->oobblock > 512 && this->cmdfunc == nand_command)
this->cmdfunc = nand_command_lp;
printk (KERN_INFO "NAND device: Manufacturer ID:"
" 0x%02x, Chip ID: 0x%02x (%s %s)\n", nand_maf_id, nand_dev_id,
nand_manuf_ids[maf_id].name , nand_flash_ids[i].name);
break;
}//好的,检测结束^_^
if (!nand_flash_ids[i].name) {
printk (KERN_WARNING "No NAND device found!!!\n");
this->select_chip(mtd, -1);
return 1;
}
//统计一下同种类型的nand flash有多少块(我板上只有一块)
for (i=1; i < maxchips; i++) {
this->select_chip(mtd, i);
/* Send the command for reading device ID */
this->cmdfunc (mtd, NAND_CMD_READID, 0x00, -1);
/* Read manufacturer and device IDs */
if (nand_maf_id != this->read_byte(mtd) ||
nand_dev_id != this->read_byte(mtd))
break;
}
if (i > 1)
printk(KERN_INFO "%d NAND chips detected\n", i);
/* Allocate buffers, if neccecary */
if (!this->oob_buf) {
size_t len;
//求出一个檫除单元64K中oob所占用的总空间
len = mtd->oobsize << (this->phys_erase_shift - this->page_shift);
this->oob_buf = kmalloc (len, GFP_KERNEL);
if (!this->oob_buf) {
printk (KERN_ERR "nand_scan(): Cannot allocate oob_buf\n");
return -ENOMEM;
}
this->options |= NAND_OOBBUF_ALLOC;//oob空间已分配,置相应的标志位
}
if (!this->data_buf) {
size_t len;
len = mtd->oobblock + mtd->oobsize;//512+16=128
this->data_buf = kmalloc (len, GFP_KERNEL);
if (!this->data_buf) {
if (this->options & NAND_OOBBUF_ALLOC)
kfree (this->oob_buf);
printk (KERN_ERR "nand_scan(): Cannot allocate data_buf\n");
return -ENOMEM;
}
this->options |= NAND_DATABUF_ALLOC;//数据空间已分配,置相应的标志位
}
/* Store the number of chips and calc total size for mtd */
this->numchips = i;//记录nand flash片数
mtd->size = i * this->chipsize;//计算出nand flash总大小
/* Convert chipsize to number of pages per chip -1. */
this->pagemask = (this->chipsize >> this->page_shift) - 1;//(64M>>9)-1=128k-1=0x1ffff
/* Preset the internal oob buffer */
//oob_buf全部置为0xff
memset(this->oob_buf, 0xff, mtd->oobsize << (this->phys_erase_shift - this->page_shift));
/* If no default placement scheme is given, select an
* appropriate one */
if (!this->autooob) { //我们选用的是NAND_ECC_SOFT,autooob未设置
/* Select the appropriate default oob placement scheme for
* placement agnostic filesystems */
switch (mtd->oobsize) {
case 8:
this->autooob = &nand_oob_8;
break;
case 16:
this->autooob = &nand_oob_16;//我们的nand flash属于这一类
break;
case 64:
this->autooob = &nand_oob_64;
break;
default:
printk (KERN_WARNING "No oob scheme defined for oobsize %d\n",
mtd->oobsize);
BUG();
}
}
注:
ECC的东西不是很懂,先跳过^_^
/* The number of bytes available for the filesystem to place fs dependend
* oob data */
mtd->oobavail = 0;
for (i = 0; this->autooob->oobfree[i][1]; i++)
mtd->oobavail += this->autooob->oobfree[i][1];
/*
* check ECC mode, default to software
* if 3byte/512byte hardware ECC is selected and we have 256 byte pagesize
* fallback to software ECC
*/
this->eccsize = 256; /* set default eccsize */
this->eccbytes = 3;
switch (this->eccmode) {
case NAND_ECC_HW12_2048:
if (mtd->oobblock < 2048) {
printk(KERN_WARNING "2048 byte HW ECC not possible on %d byte page size, fallback to SW ECC\n",
mtd->oobblock);
this->eccmode = NAND_ECC_SOFT;
this->calculate_ecc = nand_calculate_ecc;
this->correct_data = nand_correct_data;
} else
this->eccsize = 2048;
break;
case NAND_ECC_HW3_512:
case NAND_ECC_HW6_512:
case NAND_ECC_HW8_512:
if (mtd->oobblock == 256) {
printk (KERN_WARNING "512 byte HW ECC not possible on 256 Byte pagesize, fallback to SW ECC \n");
this->eccmode = NAND_ECC_SOFT;
this->calculate_ecc = nand_calculate_ecc;
this->correct_data = nand_correct_data;
} else
this->eccsize = 512; /* set eccsize to 512 */
break;
case NAND_ECC_HW3_256:
break;
case NAND_ECC_NONE:
printk (KERN_WARNING "NAND_ECC_NONE selected by board driver. This is not recommended !!\n");
this->eccmode = NAND_ECC_NONE;
break;
case NAND_ECC_SOFT:
this->calculate_ecc = nand_calculate_ecc;
this->correct_data = nand_correct_data;
break;
default:
printk (KERN_WARNING "Invalid NAND_ECC_MODE %d\n", this->eccmode);
BUG();
}
/* Check hardware ecc function availability and adjust number of ecc bytes per
* calculation step
*/
switch (this->eccmode) {
case NAND_ECC_HW12_2048:
this->eccbytes += 4;
case NAND_ECC_HW8_512:
this->eccbytes += 2;
case NAND_ECC_HW6_512:
this->eccbytes += 3;
case NAND_ECC_HW3_512:
case NAND_ECC_HW3_256:
if (this->calculate_ecc && this->correct_data && this->enable_hwecc)
break;
printk (KERN_WARNING "No ECC functions supplied, Hardware ECC not possible\n");
BUG();
}
mtd->eccsize = this->eccsize;
/* Set the number of read / write steps for one page to ensure ECC generation */
switch (this->eccmode) {
case NAND_ECC_HW12_2048:
this->eccsteps = mtd->oobblock / 2048;
break;
case NAND_ECC_HW3_512:
case NAND_ECC_HW6_512:
case NAND_ECC_HW8_512:
this->eccsteps = mtd->oobblock / 512;
break;
case NAND_ECC_HW3_256:
case NAND_ECC_SOFT:
this->eccsteps = mtd->oobblock / 256;
break;
case NAND_ECC_NONE:
this->eccsteps = 1;
break;
}
/* Initialize state, waitqueue and spinlock */
this->state = FL_READY;
init_waitqueue_head (&this->wq);
spin_lock_init (&this->chip_lock);
/* De-select the device */
this->select_chip(mtd, -1);
/* Invalidate the pagebuffer reference */
this->pagebuf = -1;
/* Fill in remaining MTD driver data */
//填充mtd结构的其它部分
mtd->type = MTD_NANDFLASH;
mtd->flags = MTD_CAP_NANDFLASH | MTD_ECC;
mtd->ecctype = MTD_ECC_SW;
mtd->erase = nand_erase;
mtd->point = NULL;
mtd->unpoint = NULL;
mtd->read = nand_read;
/* nand_read->nand_do_read_ecc->read_buf->s3c2410_nand_read_buf */
mtd->write = nand_write;
/* nand_write->nand_write_ecc->nand_write_page->write_buf->s3c2410_nand_write_buf */
mtd->read_ecc = nand_read_ecc;
mtd->write_ecc = nand_write_ecc;
mtd->read_oob = nand_read_oob;
mtd->write_oob = nand_write_oob;
mtd->readv = NULL;
mtd->writev = nand_writev;
mtd->writev_ecc = nand_writev_ecc;
mtd->sync = nand_sync;
mtd->lock = NULL;
mtd->unlock = NULL;
mtd->suspend = NULL;
mtd->resume = NULL;
mtd->block_isbad = nand_block_isbad;
mtd->block_markbad = nand_block_markbad;
/* and make the autooob the default one */
memcpy(&mtd->oobinfo, this->autooob, sizeof(mtd->oobinfo));
mtd->owner = THIS_MODULE;
/* Check, if we should skip the bad block table scan */
if (this->options & NAND_SKIP_BBTSCAN)
return 0;
/* Build bad block table */
return this->scan_bbt (mtd);
}
/**
* nand_command - [DEFAULT] Send command to NAND device
* @mtd: MTD device structure
* @command: the command to be sent
* @column: the column address for this command, -1 if none
* @page_addr: the page address for this command, -1 if none
*
* Send command to NAND device. This function is used for small page
* devices (256/512 Bytes per page)
*/
static void nand_command (struct mtd_info *mtd, unsigned command, int column, int page_addr)
{
register struct nand_chip *this = mtd->priv;
/* Begin command latch cycle */
this->hwcontrol(mtd, NAND_CTL_SETCLE); //选择写入S3C2410_NFCMD寄存器
/*
* Write out the command to the device.
*/
if (command == NAND_CMD_SEQIN) {
int readcmd;
if (column >= mtd->oobblock) { //读/写位置超出512,读oob_data
/* OOB area */
column -= mtd->oobblock;
readcmd = NAND_CMD_READOOB;
} else if (column < 256) { //读/写位置在前512,使用read0命令
/* First 256 bytes --> READ0 */
readcmd = NAND_CMD_READ0;
} else { //读/写位置在后512,使用read1命令
column -= 256;
readcmd = NAND_CMD_READ1;
}
this->write_byte(mtd, readcmd); //写入具体命令
}
this->write_byte(mtd, command);
/* Set ALE and clear CLE to start address cycle */
/* 清楚CLE,锁存命令;置位ALE,开始传输地址 */
this->hwcontrol(mtd, NAND_CTL_CLRCLE); //锁存命令
if (column != -1 || page_addr != -1) {
this->hwcontrol(mtd, NAND_CTL_SETALE); //选择写入S3C2410_NFADDR寄存器
/* Serially input address */
if (column != -1) {
/* Adjust columns for 16 bit buswidth */
if (this->options & NAND_BUSWIDTH_16)
column >>= 1;
this->write_byte(mtd, column); //写入列地址
}
if (page_addr != -1) { //写入页地址(分三个字节写入)
this->write_byte(mtd, (unsigned char) (page_addr & 0xff));
this->write_byte(mtd, (unsigned char) ((page_addr >> 8) & 0xff));
/* One more address cycle for devices > 32MiB */
if (this->chipsize > (32 << 20))
this->write_byte(mtd, (unsigned char) ((page_addr >> 16) & 0x0f));
}
/* Latch in address */
/* 锁存地址 */
this->hwcontrol(mtd, NAND_CTL_CLRALE);
}
/*
* program and erase have their own busy handlers
* status and sequential in needs no delay
*/
switch (command) {
case NAND_CMD_PAGEPROG:
case NAND_CMD_ERASE1:
case NAND_CMD_ERASE2:
case NAND_CMD_SEQIN:
case NAND_CMD_STATUS:
return;
case NAND_CMD_RESET: //复位操作
// 等待nand flash become ready
if (this->dev_ready) //判断nand flash 是否busy(1:ready 0:busy)
break;
udelay(this->chip_delay);
this->hwcontrol(mtd, NAND_CTL_SETCLE);
this->write_byte(mtd, NAND_CMD_STATUS);
this->hwcontrol(mtd, NAND_CTL_CLRCLE);
while ( !(this->read_byte(mtd) & NAND_STATUS_READY));
return;
/* This applies to read commands */
default:
/*
* If we don't have access to the busy pin, we apply the given
* command delay
*/
if (!this->dev_ready) {
udelay (this->chip_delay);//稍作延迟
return;
}
}
/* Apply this short delay always to ensure that we do wait tWB in
* any case on any machine. */
ndelay (100);
nand_wait_ready(mtd);
}
/*
* Wait for the ready pin, after a command
* The timeout is catched later.
*/
static void nand_wait_ready(struct mtd_info *mtd)
{
struct nand_chip *this = mtd->priv;
unsigned long timeo = jiffies + 2;
/* wait until command is processed or timeout occures */
do {
if (this->dev_ready(mtd)) //简单调用this->dev_ready(s3c2410_nand_devready)函数 等待nand flash become ready
return;
touch_softlockup_watchdog();
} while (time_before(jiffies, timeo));
}
/**
* nand_wait - [DEFAULT] wait until the command is done
* @mtd: MTD device structure
* @this: NAND chip structure
* @state: state to select the max. timeout value
*
* Wait for command done. This applies to erase and program only
* Erase can take up to 400ms and program up to 20ms according to
* general NAND and SmartMedia specs
*
*/
/* 等待知道命令传输完成,适用于檫除和写入命令 */
static int nand_wait(struct mtd_info *mtd, struct nand_chip *this, int state)
{
unsigned long timeo = jiffies;
int status;
if (state == FL_ERASING)
timeo += (HZ * 400) / 1000;//檫除操作的话,时间相对要长一些
else
timeo += (HZ * 20) / 1000;
/* Apply this short delay always to ensure that we do wait tWB in
* any case on any machine. */
ndelay (100);
if ((state == FL_ERASING) && (this->options & NAND_IS_AND))
this->cmdfunc (mtd, NAND_CMD_STATUS_MULTI, -1, -1);
else
this->cmdfunc (mtd, NAND_CMD_STATUS, -1, -1);
while (time_before(jiffies, timeo)) {
/* Check, if we were interrupted */
if (this->state != state)
return 0;
/* 等待nand flash become ready */
if (this->dev_ready) {
if (this->dev_ready(mtd))
break;
} else {
if (this->read_byte(mtd) & NAND_STATUS_READY)
break;
}
cond_resched();
}
status = (int) this->read_byte(mtd);
return status;
}
/**
* nand_block_bad - [DEFAULT] Read bad block marker from the chip
* 检查nand flash中某一页是否为坏块
* @mtd: MTD device structure
* @ofs: offset from device start
* @getchip: 0, if the chip is already selected
*
* Check, if the block is bad.
*/
static int nand_block_bad(struct mtd_info *mtd, loff_t ofs, int getchip)
{
int page, chipnr, res = 0;
struct nand_chip *this = mtd->priv;
u16 bad;
if (getchip) {
page = (int)(ofs >> this->page_shift);
chipnr = (int)(ofs >> this->chip_shift);
/* Grab the lock and see if the device is available */
nand_get_device (this, mtd, FL_READING);
/* Select the NAND device */
this->select_chip(mtd, chipnr);
} else
page = (int) ofs;
if (this->options & NAND_BUSWIDTH_16) {
this->cmdfunc (mtd, NAND_CMD_READOOB, this->badblockpos & 0xFE, page & this->pagemask);
bad = cpu_to_le16(this->read_word(mtd));
if (this->badblockpos & 0x1)
bad >>= 1;
if ((bad & 0xFF) != 0xff)
res = 1;
} else {
this->cmdfunc (mtd, NAND_CMD_READOOB, this->badblockpos, page & this->pagemask);
/* 发送读oob_data命令(oob_data的badblockpos (第6)位记录着坏块标志) */
if (this->read_byte(mtd) != 0xff)//坏块
res = 1;
}
if (getchip) {
/* Deselect and wake up anyone waiting on the device */
nand_release_device(mtd);
}
return res;
}
/**
* nand_default_block_markbad - [DEFAULT] mark a block bad
* 标志坏块
* @mtd: MTD device structure
* @ofs: offset from device start
*
* This is the default implementation, which can be overridden by
* a hardware specific driver.
*/
static int nand_default_block_markbad(struct mtd_info *mtd, loff_t ofs)
{
struct nand_chip *this = mtd->priv;
u_char buf[2] = {0, 0};
size_t retlen;
int block;
/* Get block number */
block = ((int) ofs) >> this->bbt_erase_shift;
if (this->bbt)
this->bbt[block >> 2] |= 0x01 << ((block & 0x03) << 1);
/*
这个暂时不是很好说:内核维护一个标志bad block表,使用2bit来表示1block。
这个表在开机的时候通过扫描nand flash每个block的头两页的oob数据来生成,
发现坏块后至相应的block标志位为非零(有时候至3,但有时候至1,还没搞明白有什么不同)
*/
/* Do we have a flash based bad block table ? */
if (this->options & NAND_USE_FLASH_BBT)//samsun nand flash不属于这种,暂时不去研究,以后同
return nand_update_bbt (mtd, ofs);
/* We write two bytes, so we dont have to mess with 16 bit access */
ofs += mtd->oobsize + (this->badblockpos & ~0x01);//???????????????
return nand_write_oob (mtd, ofs , 2, &retlen, buf);
}
/**
* nand_verify_buf - [DEFAULT] Verify chip data against buffer
* 检验nand flash与buffer的数据是否一致
* @mtd: MTD device structure
* @buf: buffer containing the data to compare
* @len: number of bytes to compare
*
* Default verify function for 8bit buswith
*/
static int nand_verify_buf(struct mtd_info *mtd, const u_char *buf, int len)
{
int i;
struct nand_chip *this = mtd->priv;
for (i=0; i<len; i++)
if (buf[i] != readb(this->IO_ADDR_R))
return -EFAULT;
return 0;
}
/**
* nand_default_bbt - [NAND Interface] Select a default bad block table for the device
* @mtd: MTD device structure
*
* This function selects the default bad block table
* support for the device and calls the nand_scan_bbt function
*
*/
int nand_default_bbt (struct mtd_info *mtd)
{
struct nand_chip *this = mtd->priv;
/* Default for AG-AND. We must use a flash based
* bad block table as the devices have factory marked
* _good_ blocks. Erasing those blocks leads to loss
* of the good / bad information, so we _must_ store
* this information in a good / bad table during
* startup
*/
if (this->options & NAND_IS_AND) {
/* Use the default pattern descriptors */
if (!this->bbt_td) {
this->bbt_td = &bbt_main_descr;
this->bbt_md = &bbt_mirror_descr;
}
this->options |= NAND_USE_FLASH_BBT;
return nand_scan_bbt (mtd, &agand_flashbased);
}
/* Is a flash based bad block table requested ? */
if (this->options & NAND_USE_FLASH_BBT) {
/* Use the default pattern descriptors */
if (!this->bbt_td) {
this->bbt_td = &bbt_main_descr;
this->bbt_md = &bbt_mirror_descr;
}
if (!this->badblock_pattern) {
this->badblock_pattern = (mtd->oobblock > 512) ?
&largepage_flashbased : &smallpage_flashbased;
}
} else { //samsun nand flash的坏块表不存在与nand flash里面,需要扫描来生成。
this->bbt_td = NULL;
this->bbt_md = NULL;
if (!this->badblock_pattern) {
this->badblock_pattern = (mtd->oobblock > 512) ?
&largepage_memorybased : &smallpage_memorybased;
}
}
return nand_scan_bbt (mtd, this->badblock_pattern);
}
/**
* nand_scan_bbt - [NAND Interface] scan, find, read and maybe create bad block table(s)
* @mtd: MTD device structure
* @bd: descriptor for the good/bad block search pattern
*
* The function checks, if a bad block table(s) is/are already
* available. If not it scans the device for manufacturer
* marked good / bad blocks and writes the bad block table(s) to
* the selected place.
*
* The bad block table memory is allocated here. It must be freed
* by calling the nand_free_bbt function.
*
*/
int nand_scan_bbt (struct mtd_info *mtd, struct nand_bbt_descr *bd)
{
struct nand_chip *this = mtd->priv;
int len, res = 0;
uint8_t *buf;
struct nand_bbt_descr *td = this->bbt_td;
struct nand_bbt_descr *md = this->bbt_md;
len = mtd->size >> (this->bbt_erase_shift + 2);
/* Allocate memory (2bit per block) */
/* 2bit per block=(2/8)byte per block,所以上面要多右移2位 */
this->bbt = kmalloc (len, GFP_KERNEL);
if (!this->bbt) {
printk (KERN_ERR "nand_scan_bbt: Out of memory\n");
return -ENOMEM;
}
/* Clear the memory bad block table */
memset (this->bbt, 0x00, len);
/* If no primary table decriptor is given, scan the device
* to build a memory based bad block table
*/
if (!td) {
if ((res = nand_memory_bbt(mtd, bd))) {
printk (KERN_ERR "nand_bbt: Can't scan flash and build the RAM-based BBT\n");
kfree (this->bbt);
this->bbt = NULL;
}
return res;
}
/* Allocate a temporary buffer for one eraseblock incl. oob */
/* 分配1 block所需要的oob data空间 */
len = (1 << this->bbt_erase_shift);
len += (len >> this->page_shift) * mtd->oobsize;
buf = kmalloc (len, GFP_KERNEL);
if (!buf) {
printk (KERN_ERR "nand_bbt: Out of memory\n");
kfree (this->bbt);
this->bbt = NULL;
return -ENOMEM;
}
//由于td、md均为NULL,一下函数基本不起作用,先不去研究它
/* Is the bbt at a given page ? */
if (td->options & NAND_BBT_ABSPAGE) {
res = read_abs_bbts (mtd, buf, td, md);
} else {
/* Search the bad block table using a pattern in oob */
res = search_read_bbts (mtd, buf, td, md);
}
if (res)
res = check_create (mtd, buf, bd);
/* Prevent the bbt regions from erasing / writing */
mark_bbt_region (mtd, td);
if (md)
mark_bbt_region (mtd, md);
kfree (buf);
return res;
}
/**
* nand_memory_bbt - [GENERIC] create a memory based bad block table
* @mtd: MTD device structure
* @bd: descriptor for the good/bad block search pattern
*
* The function creates a memory based bbt by scanning the device
* for manufacturer / software marked good / bad blocks
*/
static inline int nand_memory_bbt (struct mtd_info *mtd, struct nand_bbt_descr *bd)
{
struct nand_chip *this = mtd->priv;
bd->options &= ~NAND_BBT_SCANEMPTY;
//我们只需要扫描oob data,不需要扫描全部(512+16bytes的数据)
return create_bbt (mtd, this->data_buf, bd, -1);
}
/**
* create_bbt - [GENERIC] Create a bad block table by scanning the device
* @mtd: MTD device structure
* @buf: temporary buffer
* @bd: descriptor for the good/bad block search pattern
* @chip: create the table for a specific chip, -1 read all chips.
* Applies only if NAND_BBT_PERCHIP option is set
*
* Create a bad block table by scanning the device
* for the given good/bad block identify pattern
*/
static int create_bbt (struct mtd_info *mtd, uint8_t *buf, struct nand_bbt_descr *bd, int chip)
{
struct nand_chip *this = mtd->priv;
int i, j, numblocks, len, scanlen;
int startblock;
loff_t from;
size_t readlen, ooblen;
printk (KERN_INFO "Scanning device for bad blocks\n");
if (bd->options & NAND_BBT_SCANALLPAGES)//扫描所有都页
len = 1 << (this->bbt_erase_shift - this->page_shift);//求出每block所含的page数
else {
if (bd->options & NAND_BBT_SCAN2NDPAGE)//只检查2 page
len = 2;
else
len = 1;//只检查1 page
}
if (!(bd->options & NAND_BBT_SCANEMPTY)) {
/* We need only read few bytes from the OOB area */
/* 我们只需要检查OOB的某些数据 */
scanlen = ooblen = 0;
readlen = bd->len;
} else {
/* Full page content should be read */
/* 读取整页内容 */
scanlen = mtd->oobblock + mtd->oobsize;
readlen = len * mtd->oobblock;
ooblen = len * mtd->oobsize;
}
if (chip == -1) {
/* Note that numblocks is 2 * (real numblocks) here, see i+=2 below as it
* makes shifting and masking less painful */
/* 计算出nand flash所包含都block数目(注意这里总数目经过林乘2操作)*/
numblocks = mtd->size >> (this->bbt_erase_shift - 1);
startblock = 0;
from = 0;
} else {
if (chip >= this->numchips) {
printk (KERN_WARNING "create_bbt(): chipnr (%d) > available chips (%d)\n",
chip + 1, this->numchips);
return -EINVAL;
}
numblocks = this->chipsize >> (this->bbt_erase_shift - 1);
startblock = chip * numblocks;
numblocks += startblock;
from = startblock << (this->bbt_erase_shift - 1);
}
for (i = startblock; i < numblocks;) {
int ret;
if (bd->options & NAND_BBT_SCANEMPTY) //整页数据读取
if ((ret = nand_read_raw (mtd, buf, from, readlen, ooblen)))
return ret;
for (j = 0; j < len; j++) {
if (!(bd->options & NAND_BBT_SCANEMPTY)) {
size_t retlen;
/* Read the full oob until read_oob is fixed to
* handle single byte reads for 16 bit buswidth */
/* 读取当前页的oob区的所有数据 */
ret = mtd->read_oob(mtd, from + j * mtd->oobblock,
mtd->oobsize, &retlen, buf);
if (ret)
return ret;
/* 检查oob data的bad block标志位,判断是否是坏块 */
if (check_short_pattern (buf, bd)) {
this->bbt[i >> 3] |= 0x03 << (i & 0x6);
/* 注意:这里i=实际值*2。由于一个block的状态用2bit来表示,那么一个字节可以存放4个block的状态。
这里i>>3刚好是实际block/4,4个block的状态刚好存放在this->bbt所指向的一个字节里面
*/
printk (KERN_WARNING "Bad eraseblock %d at 0x%08x\n",
i >> 1, (unsigned int) from);
break;
}
} else {
if (check_pattern (&buf[j * scanlen], scanlen, mtd->oobblock, bd)) {
this->bbt[i >> 3] |= 0x03 << (i & 0x6);
printk (KERN_WARNING "Bad eraseblock %d at 0x%08x\n",
i >> 1, (unsigned int) from);
break;
}
}
}
i += 2;//更新block的序号
from += (1 << this->bbt_erase_shift);//更新nand flash的地址
}
return 0;
}
/**
* nand_release - [NAND Interface] Free resources held by the NAND device
* @mtd: MTD device structure
*/
void nand_release (struct mtd_info *mtd)
{
struct nand_chip *this = mtd->priv;
#ifdef CONFIG_MTD_PARTITIONS
/* Deregister partitions */
del_mtd_partitions (mtd);
#endif
/* Deregister the device */
del_mtd_device (mtd);
/* Free bad block table memory, if allocated */
if (this->bbt)
kfree (this->bbt);
/* Buffer allocated by nand_scan ? */
if (this->options & NAND_OOBBUF_ALLOC)
kfree (this->oob_buf);
/* Buffer allocated by nand_scan ? */
if (this->options & NAND_DATABUF_ALLOC)
kfree (this->data_buf);
}
附录:
/arch/arm/mach-s3c2410/dev.c文件:
static struct mtd_partition partition_info[]={
[0]={
name :"vivi",
size :0x20000,
offset :0,
},[1]={
name :"param",
size :0x10000,
offset :0x20000,
},[2]={
name :"kernel",
size :0x1d0000,
offset :0x30000,
},[3]={
name :"root",
size :0x3c00000,
offset :0x200000,
}
};
struct s3c2410_nand_set nandset={
nr_partitions :4,
partitions :partition_info,
};
struct s3c2410_platform_nand superlpplatform={
tacls :0,
twrph0 :30,
twrph1 :0,
sets :&nandset,
nr_sets :1,
};
struct platform_device s3c_device_nand = {
.name = "s3c2410-nand",
.id = -1,
.num_resources = ARRAY_SIZE(s3c_nand_resource),
.resource = s3c_nand_resource,
.dev={
.platform_data=&superlpplatform
}
};
nand_flash_ids表
/driver/mtd/nand/nand_ids.c文件:
struct nand_flash_dev nand_flash_ids[] = {
................................................................................
{"NAND 64MiB 3,3V 8-bit", 0x76, 512, 64, 0x4000, 0},
................................................................................
};
注:
这里只列出常用的samsun 64M Nand Flash的资料,对应的信息请看该结构体的定义:
struct nand_flash_dev {
char *name;
int id;
unsigned long pagesize;
unsigned long chipsize;
unsigned long erasesize;
unsigned long options;
};
可知该nand flash 设备ID号为0x76,页大小为512,大小为64(M),檫除单元大小为16(K)。
现在再由上到下的研究一下是如何通过MTD原始设备来访问FLASH硬件驱动的。
首先分析一下如何通过MTD原始设备进而通过FLASH硬件驱动来读取FLASH存储器的数据。
引用自<<Linux系统移植>>一文:
"读Nand Flash:
当对nand flash的设备文件(nand flash在/dev下对应的文件)执行系统调用read(),或在某个文件系统中对该
设备进行读操作时. 会调用struct mtd_info中的read方法,他们缺省调用函数为nand_read(),在
drivers/mtd/nand/nand_base.c中定义.nand_read()调用nand_do_read_ecc(),执行读操作. 在
nand_do_read_ecc()函数中,主要完成如下几项工作:
1. 会调用在nand flash驱动中对struct nand_chip重载的select_chip方法,即
s3c2410_nand_select_chip()选择要操作的MTD芯片.
2. 会调用在struct nand_chip中系统缺省的方法cmdfunc发送读命令到nand flash.
3. 会调用在nand flash驱动中对struct nand_chip重载的read_buf(),即s3c2410_nand_read_buf()
从Nand Flash的控制器的数据寄存器中读出数据.
4. 如果有必要的话,会调用在nand flash驱动中对struct nand_chip重载的
enable_hwecc,correct_data以及calculate_ecc方法,进行数据ECC校验。"
下面研究一下其中的细节:
/**
* nand_read - [MTD Interface] MTD compability function for nand_do_read_ecc
* @mtd: MTD device structure
* @from: offset to read from
* @len: number of bytes to read
* @retlen: pointer to variable to store the number of read bytes
* @buf: the databuffer to put data
*
* This function simply calls nand_do_read_ecc with oob buffer and oobsel = NULL
* and flags = 0xff
*/
static int nand_read (struct mtd_info *mtd, loff_t from, size_t len, size_t * retlen, u_char * buf)
{
return nand_do_read_ecc (mtd, from, len, retlen, buf, NULL, &mtd->oobinfo, 0xff);
}
注:
以参数oob_buf为NULL,flags为0xff调用nand_do_read_ecc函数。
/**
* nand_do_read_ecc - [MTD Interface] Read data with ECC
* @mtd: MTD device structure
* @from: offset to read from
* @len: number of bytes to read
* @retlen: pointer to variable to store the number of read bytes
* @buf: the databuffer to put data
* @oob_buf: filesystem supplied oob data buffer (can be NULL)
* @oobsel: oob selection structure
* @flags: flag to indicate if nand_get_device/nand_release_device should be preformed
* and how many corrected error bits are acceptable:
* bits 0..7 - number of tolerable errors
* bit 8 - 0 == do not get/release chip, 1 == get/release chip
*
* NAND read with ECC
*/
int nand_do_read_ecc (struct mtd_info *mtd, loff_t from, size_t len,
size_t * retlen, u_char * buf, u_char * oob_buf,
struct nand_oobinfo *oobsel, int flags)
{
int i, j, col, realpage, page, end, ecc, chipnr, sndcmd = 1;
int read = 0, oob = 0, ecc_status = 0, ecc_failed = 0;
struct nand_chip *this = mtd->priv;
u_char *data_poi, *oob_data = oob_buf;//目前oob_data指针为空,以后会去修改它。
u_char ecc_calc[32];//该数组用于存放计算出来的ecc结果
u_char ecc_code[32];//该数组用于存放oob中ecc部分的数据
int eccmode, eccsteps;//eccmode存放ecc的类型(ECC_SOFT);
eccsteps用于记录一个page所需的ecc校验次数(2)。
int *oob_config, datidx;
int blockcheck = (1 << (this->phys_erase_shift - this->page_shift)) - 1;
int eccbytes;
int compareecc = 1;//是否需要ecc标志(如果设置成ECC_NONE,这个标志将被清0)
int oobreadlen;
DEBUG (MTD_DEBUG_LEVEL3, "nand_read_ecc: from = 0x%08x, len = %i\n", (unsigned int) from, (int) len);
/* Do not allow reads past end of device */
/* 不允许超越设备容量的读操作 */
if ((from + len) > mtd->size) {
DEBUG (MTD_DEBUG_LEVEL0, "nand_read_ecc: Attempt read beyond end of device\n");
*retlen = 0;
return -EINVAL;
}
/* Grab the lock and see if the device is available */
/* 获取自旋锁,等待设备可用并获取其控制权 */
if (flags & NAND_GET_DEVICE)
nand_get_device (this, mtd, FL_READING);
/* Autoplace of oob data ? Use the default placement scheme */
if (oobsel->useecc == MTD_NANDECC_AUTOPLACE)
oobsel = this->autooob;
/*
* 感觉这一步有点多余,因为nand_scan中已经调用了以下代码:
* memcpy(&mtd->oobinfo, this->autooob, sizeof(mtd->oobinfo));
* 把this->autooob的内容拷贝到mtd->oobinfo中了
*/
eccmode = oobsel->useecc ? this->eccmode : NAND_ECC_NONE;
oob_config = oobsel->eccpos;//记录ecc在oob数据中的位置
/* Select the NAND device */
chipnr = (int)(from >> this->chip_shift);
this->select_chip(mtd, chipnr);//选择nand flash芯片(在s3c2410 nand flash控制器中为空操作)
/* First we calculate the starting page */
/* 首先,我们计算出开始页码 */
realpage = (int) (from >> this->page_shift);
page = realpage & this->pagemask;
/* Get raw starting column */
/* 其次,我们计算页内偏址 */
col = from & (mtd->oobblock - 1);
end = mtd->oobblock;//页大小(512)
ecc = this->eccsize;//ecc保护下的数据大小(256)
eccbytes = this->eccbytes;//ecc所占的字节数(3)
if ((eccmode == NAND_ECC_NONE) || (this->options & NAND_HWECC_SYNDROME))
compareecc = 0;//如果设置为关闭ECC或写操作才需要ECC,那把ecc给禁用(现在可是读操作^_^)
oobreadlen = mtd->oobsize;//16
if (this->options & NAND_HWECC_SYNDROME)
oobreadlen -= oobsel->eccbytes;
/* Loop until all data read */
while (read < len) {
int aligned = (!col && (len - read) >= end);
/*
* If the read is not page aligned, we have to read into data buffer
* due to ecc, else we read into return buffer direct
* 如果要读的位置不是页对齐都话,那么只要先把整页读出来,
* 取出所需要读取的数据,然后修改读位置,那么以后的读操作都是页对齐的了。
*/
if (aligned)
data_poi = &buf[read];
else
data_poi = this->data_buf;
/* Check, if we have this page in the buffer
*
* FIXME: Make it work when we must provide oob data too,
* check the usage of data_buf oob field
* 如果我们所需要的数据还存在于缓冲中都话:
* 1 如果读位置页对齐,我们只要把缓冲中的数据直接拷贝到data_poi(buf[read])中即可(因为数据存在与缓存中,所以也无需要考虑ecc问题)
* 2 如果读位置不是页对齐,什么读不要作,让其继续留在缓存(data_buf)中,以后会从data_poi(指向缓存data_buf)中提取所需要的数据。
*/
if (realpage == this->pagebuf && !oob_buf) {
/* aligned read ? */
if (aligned)
memcpy (data_poi, this->data_buf, end);
goto readdata;
}
/* Check, if we must send the read command */
/* 发送读命令,页地址为page,列地址为0x00 */
if (sndcmd) {
this->cmdfunc (mtd, NAND_CMD_READ0, 0x00, page);
sndcmd = 0;
}
/* get oob area, if we have no oob buffer from fs-driver */
if (!oob_buf || oobsel->useecc == MTD_NANDECC_AUTOPLACE ||
oobsel->useecc == MTD_NANDECC_AUTOPL_USR)
oob_data = &this->data_buf[end];//以上情况,oob_data暂存在data_buf缓存中
eccsteps = this->eccsteps;//2
switch (eccmode) {
case NAND_ECC_NONE: { /* No ECC, Read in a page */
static unsigned long lastwhinge = 0;
if ((lastwhinge / HZ) != (jiffies / HZ)) {
printk (KERN_WARNING "Reading data from NAND FLASH without ECC is not recommended\n");
lastwhinge = jiffies;
}
this->read_buf(mtd, data_poi, end);
break;
}
case NAND_ECC_SOFT: /* Software ECC 3/256: Read in a page + oob data */
this->read_buf(mtd, data_poi, end);//读取数据到data_poi
for (i = 0, datidx = 0; eccsteps; eccsteps--, i+=3, datidx += ecc)
this->calculate_ecc(mtd, &data_poi[datidx], &ecc_calc[i]);
/* 计算出读取到data_poi的数据的ecc值,并存放到ecc_calc数组中。
* 因为读都数据有一页大小(512),需要分别对其上半部和下半部分计算一次ecc值,并分开存放到ecc_calc数组相应都位置中。
*/
break;
default:
for (i = 0, datidx = 0; eccsteps; eccsteps--, i+=eccbytes, datidx += ecc) {
this->enable_hwecc(mtd, NAND_ECC_READ);
this->read_buf(mtd, &data_poi[datidx], ecc);
/* HW ecc with syndrome calculation must read the
* syndrome from flash immidiately after the data */
if (!compareecc) {
/* Some hw ecc generators need to know when the
* syndrome is read from flash */
this->enable_hwecc(mtd, NAND_ECC_READSYN);
this->read_buf(mtd, &oob_data[i], eccbytes);
/* We calc error correction directly, it checks the hw
* generator for an error, reads back the syndrome and
* does the error correction on the fly */
ecc_status = this->correct_data(mtd, &data_poi[datidx], &oob_data[i], &ecc_code[i]);
if ((ecc_status == -1) || (ecc_status > (flags && 0xff))) {
DEBUG (MTD_DEBUG_LEVEL0, "nand_read_ecc: "
"Failed ECC read, page 0x%08x on chip %d\n", page, chipnr);
ecc_failed++;
}
} else {
this->calculate_ecc(mtd, &data_poi[datidx], &ecc_calc[i]);
}
}
break;
}
/* read oobdata */
this->read_buf(mtd, &oob_data[mtd->oobsize - oobreadlen], oobreadlen);
//读取oob_data存放到oob_data[mtd->oobsize - oobreadlen],在这里是data_buf[end]中
/* Skip ECC check, if not requested (ECC_NONE or HW_ECC with syndromes) */
/* 跳过ecc检测 */
if (!compareecc)
goto readoob;
/* Pick the ECC bytes out of the oob data */
/* 从刚读出来都oob_data中取出ecc数据(在这里是前三个字节) */
for (j = 0; j < oobsel->eccbytes; j++)
ecc_code[j] = oob_data[oob_config[j]];
/* correct data, if neccecary */
for (i = 0, j = 0, datidx = 0; i < this->eccsteps; i++, datidx += ecc) {
ecc_status = this->correct_data(mtd, &data_poi[datidx], &ecc_code[j], &ecc_calc[j]);
/* 拿前面计算出来都ecc_cal数组都数据与读出来的ecc数据作比较,并尝试修正错误(但不保证能修复,具体看返回值) */
/* Get next chunk of ecc bytes */
j += eccbytes;
/* Check, if we have a fs supplied oob-buffer,
* This is the legacy mode. Used by YAFFS1
* Should go away some day
*/
if (oob_buf && oobsel->useecc == MTD_NANDECC_PLACE) {
int *p = (int *)(&oob_data[mtd->oobsize]);
p[i] = ecc_status;
}
/* 很不幸,ecc检测发现错误且未能修复,报告错误 */
if ((ecc_status == -1) || (ecc_status > (flags && 0xff))) {
DEBUG (MTD_DEBUG_LEVEL0, "nand_read_ecc: " "Failed ECC read, page 0x%08x\n", page);
ecc_failed++;
}
}
readoob:
/* check, if we have a fs supplied oob-buffer */
if (oob_buf) {
/* without autoplace. Legacy mode used by YAFFS1 */
switch(oobsel->useecc) {
case MTD_NANDECC_AUTOPLACE:
case MTD_NANDECC_AUTOPL_USR:
/* Walk through the autoplace chunks */
for (i = 0; oobsel->oobfree[i][1]; i++) {
int from = oobsel->oobfree[i][0];
int num = oobsel->oobfree[i][1];
memcpy(&oob_buf[oob], &oob_data[from], num);
oob += num;
}
break;
case MTD_NANDECC_PLACE:
/* YAFFS1 legacy mode */
oob_data += this->eccsteps * sizeof (int);
default:
oob_data += mtd->oobsize;
}
}
readdata:
/* Partial page read, transfer data into fs buffer
* 读位置不是页对齐,从data_poi(data_buf中)提取所需要都数据
*/
if (!aligned) {
for (j = col; j < end && read < len; j++)
buf[read++] = data_poi[j];//read自增
this->pagebuf = realpage;
} else
read += mtd->oobblock;//整页读取,计数值加上整页的数目(512)
/* Apply delay or wait for ready/busy pin
* Do this before the AUTOINCR check, so no problems
* arise if a chip which does auto increment
* is marked as NOAUTOINCR by the board driver.
*/
if (!this->dev_ready)
udelay (this->chip_delay);
else
nand_wait_ready(mtd);
if (read == len)//所需数据读完都情况,退出读循环。
break;
/* For subsequent reads align to page boundary. */
col = 0;//对于读位置不是页对齐都情况,前面已对其进行林相应都处理,现在读位置变得页对齐了。
/* Increment page address */
realpage++;//页地址加1,读取下一页。
page = realpage & this->pagemask;
/* Check, if we cross a chip boundary */
if (!page) {
chipnr++;
this->select_chip(mtd, -1);
this->select_chip(mtd, chipnr);
}
/* Check, if the chip supports auto page increment
* or if we have hit a block boundary.
* 如果芯片支持页自增操作,且未到block boundary(15)的话,不用再发送读命令
*/
if (!NAND_CANAUTOINCR(this) || !(page & blockcheck))
sndcmd = 1;
}
/* Deselect and wake up anyone waiting on the device */
if (flags & NAND_GET_DEVICE)
nand_release_device(mtd);//放弃对设备都控制权,好让其它进程获取并占有它
/*
* Return success, if no ECC failures, else -EBADMSG
* fs driver will take care of that, because
* retlen == desired len and result == -EBADMSG
*/
*retlen = read;
return ecc_failed ? -EBADMSG : 0;
}
好的,接着研究一下如何通过MTD原始设备进而通过FLASH硬件驱动向FLASH存储器写数据。
引用自<<Linux系统移植>>一文:
写Nand Flash
当对nand flash的设备文件(nand flash在/dev下对应的文件)执行系统调用write(),或在某个文件系统中对该设备
进行读操作时, 会调用struct mtd_info中write方法,他们缺省调用函数为nand_write(),这两个函数在
drivers/mtd/nand/nand_base.c中定义. nand_write()调用nand_write_ecc(),执行写操作.在
nand_do_write_ecc()函数中,主要完成如下几项工作:
1. 会调用在nand flash驱动中对struct nand_chip重载的select_chip方法,即
s3c2410_nand_select_chip()选择要操作的MTD芯片.
2. 调用nand_write_page()写一个页.
3. 在nand_write_page()中,会调用在struct nand_chip中系统缺省的方法cmdfunc发送写命令
到nand flash.
4. 在nand_write_page()中,会调用在nand flash驱动中对struct nand_chip重载的
write_buf(),即s3c2410_nand_write_buf()从Nand Flash的控制器的数据寄存器中写入数据.
5. 在nand_write_page()中,会调用在nand flash驱动中对struct nand_chip重载waitfunc方法,
该方法调用系统缺省函数nand_wait(),该方法获取操作状态,并等待nand flash操作完成.等
待操作完成,是调用nand flash驱动中对struct nand_chip中重载的dev_ready方法,即
s3c2410_nand_devready()函数.
下面研究一下其中的细节:
/**
* nand_write - [MTD Interface] compability function for nand_write_ecc
* @mtd: MTD device structure
* @to: offset to write to
* @len: number of bytes to write
* @retlen: pointer to variable to store the number of written bytes
* @buf: the data to write
*
* This function simply calls nand_write_ecc with oob buffer and oobsel = NULL
*
*/
static int nand_write (struct mtd_info *mtd, loff_t to, size_t len, size_t * retlen, const u_char * buf)
{
return (nand_write_ecc (mtd, to, len, retlen, buf, NULL, NULL));
}
注:
以参数eccbuf、oobsel为NULL,调用nand_write_ecc函数。
/**
* nand_write_ecc - [MTD Interface] NAND write with ECC
* @mtd: MTD device structure
* @to: offset to write to
* @len: number of bytes to write
* @retlen: pointer to variable to store the number of written bytes
* @buf: the data to write
* @eccbuf: filesystem supplied oob data buffer
* @oobsel: oob selection structure
*
* NAND write with ECC
*/
static int nand_write_ecc (struct mtd_info *mtd, loff_t to, size_t len,
size_t * retlen, const u_char * buf, u_char * eccbuf, struct nand_oobinfo *oobsel)
{
int startpage, page, ret = -EIO, oob = 0, written = 0, chipnr;
int autoplace = 0, numpages, totalpages;
struct nand_chip *this = mtd->priv;
u_char *oobbuf, *bufstart;
int ppblock = (1 << (this->phys_erase_shift - this->page_shift));//page/block
DEBUG (MTD_DEBUG_LEVEL3, "nand_write_ecc: to = 0x%08x, len = %i\n", (unsigned int) to, (int) len);
/* Initialize retlen, in case of early exit */
*retlen = 0;
/* Do not allow write past end of device */
/* 超越nand flash容量的写操作是不允许的 */
if ((to + len) > mtd->size) {
DEBUG (MTD_DEBUG_LEVEL0, "nand_write_ecc: Attempt to write past end of page\n");
return -EINVAL;
}
/* reject writes, which are not page aligned */
/* 不按页对齐的写操作同样是不允许的 */
if (NOTALIGNED (to) || NOTALIGNED(len)) {
printk (KERN_NOTICE "nand_write_ecc: Attempt to write not page aligned data\n");
return -EINVAL;
}
/* Grab the lock and see if the device is available */
/* 获取设备的控制权 */
nand_get_device (this, mtd, FL_WRITING);
/* Calculate chipnr */
/*
* 存在多片flash的情况下,计算出所要写的是哪片flash?
* (当然,像我的板,只用一片nand flash,所以这个操作是不必要的)
*/
chipnr = (int)(to >> this->chip_shift);
/* Select the NAND device */
/* 片选操作 */
this->select_chip(mtd, chipnr);
/* Check, if it is write protected */
/* 如果nand flash写保护,当然不能再写了 */
if (nand_check_wp(mtd))
goto out;
/* if oobsel is NULL, use chip defaults */
if (oobsel == NULL)
oobsel = &mtd->oobinfo;
/* Autoplace of oob data ? Use the default placement scheme */
if (oobsel->useecc == MTD_NANDECC_AUTOPLACE) {
oobsel = this->autooob;
autoplace = 1;
}
if (oobsel->useecc == MTD_NANDECC_AUTOPL_USR)
autoplace = 1;
/* Setup variables and oob buffer */
totalpages = len >> this->page_shift;//计算所要读取的数据长度共有多少页
page = (int) (to >> this->page_shift);//计算数据所要写到的开始页码
/* Invalidate the page cache, if we write to the cached page */
/* 如果缓存保存的数据在我们要写数据的范围内,把缓存里的数据设置为不可用???? */
if (page <= this->pagebuf && this->pagebuf < (page + totalpages))
this->pagebuf = -1;
/* Set it relative to chip */
page &= this->pagemask;
startpage = page;
/* Calc number of pages we can write in one go */
numpages = min (ppblock - (startpage & (ppblock - 1)), totalpages);//计算出本block中允许被写的页数
oobbuf = nand_prepare_oobbuf (mtd, eccbuf, oobsel, autoplace, numpages);//先不深入研究~_~
bufstart = (u_char *)buf;//获取所要写数据的地址
/* Loop until all data is written */
/* 循环进行写操作 */
while (written < len) {
this->data_poi = (u_char*) &buf[written];//先把所要写的数据缓冲到data_poi下
/* Write one page. If this is the last page to write
* or the last page in this block, then use the
* real pageprogram command, else select cached programming
* if supported by the chip.
* 如果这是所写数据的最后一个页或许这是所写block的最后一个页,调用nand flash的
* pageprogram指令,真正把数据写入nand flash中(nand flash的最小擦除单元为block)
*/
ret = nand_write_page (mtd, this, page, &oobbuf[oob], oobsel, (--numpages > 0));
if (ret) {
DEBUG (MTD_DEBUG_LEVEL0, "nand_write_ecc: write_page failed %d\n", ret);
goto out;
}
/* Next oob page */
oob += mtd->oobsize;
/* Update written bytes count */
/* 更新写入计数值 */
written += mtd->oobblock;
if (written == len)//写入完毕,退出
goto cmp;
/* Increment page address */
page++;//下一页
/* Have we hit a block boundary ? Then we have to verify and
* if verify is ok, we have to setup the oob buffer for
* the next pages.
* 暂时不是很明白,需要先搞明白nand_prepare_oobbuf函数的作用
*/
if (!(page & (ppblock - 1))){
int ofs;
this->data_poi = bufstart;//怀疑nand_verify_pages用到
ret = nand_verify_pages (mtd, this, startpage,
page - startpage,
oobbuf, oobsel, chipnr, (eccbuf != NULL));//一页写完,检查数据
if (ret) {
DEBUG (MTD_DEBUG_LEVEL0, "nand_write_ecc: verify_pages failed %d\n", ret);
goto out;
}
*retlen = written;
ofs = autoplace ? mtd->oobavail : mtd->oobsize;
if (eccbuf)
eccbuf += (page - startpage) * ofs;
totalpages -= page - startpage;//更新需要写的页数
numpages = min (totalpages, ppblock);//更新可以写的页数
page &= this->pagemask;//更新页码
startpage = page;//更新开始页码
oobbuf = nand_prepare_oobbuf (mtd, eccbuf, oobsel,
autoplace, numpages);
/* Check, if we cross a chip boundary */
if (!page) {
chipnr++;
this->select_chip(mtd, -1);
this->select_chip(mtd, chipnr);
}
}
}
/* Verify the remaining pages */
cmp:
this->data_poi = bufstart;//怀疑nand_verify_pages用到
ret = nand_verify_pages (mtd, this, startpage, totalpages,
oobbuf, oobsel, chipnr, (eccbuf != NULL));
if (!ret)
*retlen = written;
else
DEBUG (MTD_DEBUG_LEVEL0, "nand_write_ecc: verify_pages failed %d\n", ret);
out:
/* Deselect and wake up anyone waiting on the device */
nand_release_device(mtd);//放弃对设备的控制权
return ret;
}
/**
* nand_write_page - [GENERIC] write one page
* @mtd: MTD device structure
* @this: NAND chip structure
* @page: startpage inside the chip, must be called with (page & this->pagemask)
* @oob_buf: out of band data buffer
* @oobsel: out of band selecttion structre
* @cached: 1 = enable cached programming if supported by chip
*
* Nand_page_program function is used for write and writev !
* This function will always program a full page of data
* If you call it with a non page aligned buffer, you're lost :)
*
* Cached programming is not supported yet.
*/
static int nand_write_page (struct mtd_info *mtd, struct nand_chip *this, int page,
u_char *oob_buf, struct nand_oobinfo *oobsel, int cached)
{
int i, status;
u_char ecc_code[32];
int eccmode = oobsel->useecc ? this->eccmode : NAND_ECC_NONE;
int *oob_config = oobsel->eccpos;
int datidx = 0, eccidx = 0, eccsteps = this->eccsteps;
int eccbytes = 0;
/* FIXME: Enable cached programming */
cached = 0;//在高版本的内核下找到这样的解释:
/*
* Cached progamming disabled for now, Not sure if its worth the
* trouble. The speed gain is not very impressive. (2.3->2.6Mib/s)
*/
/* Send command to begin auto page programming */
/* 发送页编程指令 */
this->cmdfunc (mtd, NAND_CMD_SEQIN, 0x00, page);
/* Write out complete page of data, take care of eccmode */
switch (eccmode) {
/* No ecc, write all */
case NAND_ECC_NONE:
printk (KERN_WARNING "Writing data without ECC to NAND-FLASH is not recommended\n");
this->write_buf(mtd, this->data_poi, mtd->oobblock);
break;
/* Software ecc 3/256, write all */
case NAND_ECC_SOFT:
for (; eccsteps; eccsteps--) {
this->calculate_ecc(mtd, &this->data_poi[datidx], ecc_code);//计算出一页的ecc数据
for (i = 0; i < 3; i++, eccidx++)
oob_buf[oob_config[eccidx]] = ecc_code[i];//存放到ecc_code数组中
datidx += this->eccsize;
}
this->write_buf(mtd, this->data_poi, mtd->oobblock);//调用FLASH硬件驱动层进行写操作
break;
default:
eccbytes = this->eccbytes;
for (; eccsteps; eccsteps--) {
/* enable hardware ecc logic for write */
this->enable_hwecc(mtd, NAND_ECC_WRITE);
this->write_buf(mtd, &this->data_poi[datidx], this->eccsize);
this->calculate_ecc(mtd, &this->data_poi[datidx], ecc_code);
for (i = 0; i < eccbytes; i++, eccidx++)
oob_buf[oob_config[eccidx]] = ecc_code[i];
/* If the hardware ecc provides syndromes then
* the ecc code must be written immidiately after
* the data bytes (words) */
if (this->options & NAND_HWECC_SYNDROME)
this->write_buf(mtd, ecc_code, eccbytes);
datidx += this->eccsize;
}
break;
}
/* Write out OOB data */
if (this->options & NAND_HWECC_SYNDROME)
this->write_buf(mtd, &oob_buf[oobsel->eccbytes], mtd->oobsize - oobsel->eccbytes);
else
this->write_buf(mtd, oob_buf, mtd->oobsize);//写oob data,主要把上面计算的ecc值写进去
/* Send command to actually program the data */
this->cmdfunc (mtd, cached ? NAND_CMD_CACHEDPROG : NAND_CMD_PAGEPROG, -1, -1);
if (!cached) {
/* call wait ready function */
status = this->waitfunc (mtd, this, FL_WRITING);//等待写入完成
/* See if operation failed and additional status checks are available */
if ((status & NAND_STATUS_FAIL) && (this->errstat)) {
status = this->errstat(mtd, this, FL_WRITING, status, page);
}
/* See if device thinks it succeeded */
if (status & NAND_STATUS_FAIL) {
DEBUG (MTD_DEBUG_LEVEL0, "%s: " "Failed write, page 0x%08x, ", __FUNCTION__, page);
return -EIO;
}
} else {
/* FIXME: Implement cached programming ! */
/* wait until cache is ready*/
// status = this->waitfunc (mtd, this, FL_CACHEDRPG);//cached的写操作暂时没用
}
return 0;
}