最短路径-Dijkstra算法与Floyd算法

时间:2021-04-30 17:12:18

一、最短路径

  ①在非网图中,最短路径是指两顶点之间经历的边数最少的路径。

最短路径-Dijkstra算法与Floyd算法

AE:1    ADE:2   ADCE:3   ABCE:3

  ②在网图中,最短路径是指两顶点之间经历的边上权值之和最短的路径。

最短路径-Dijkstra算法与Floyd算法

AE:100   ADE:90   ADCE:60   ABCE:70

  ③单源点最短路径问题

  问题描述:给定带权有向图G=(V, E)和源点v∈V,求从v到G中其余各顶点的最短路径。

  应用实例——计算机网络传输的问题:怎样找到一种最经济的方式,从一台计算机向网上所有其它计算机发送一条消息。

  ④每一对顶点之间的最短路径

  问题描述:给定带权有向图G=(V, E),对任意顶点vi,vj∈V(i≠j),求顶点vi到顶点vj的最短路径。

  解决办法1:每次以一个顶点为源点,调用Dijkstra算法n次。显然,时间复杂度为O(n3)。 解决办法2:弗洛伊德提出的求每一对顶点之间的最短路径算法——Floyd算法,其时间复杂度也是O(n3),但形式上要简单些。

二、Dijkstra算法

  ①基本思想:设置一个集合S存放已经找到最短路径的顶点,S的初始状态只包含源点v,对vi∈V-S,假设从源点v到vi的有向边为最短路径。以后每求得一条最短路径v, …, vk,就将vk加入集合S中,并将路径v, …, vk , vi与原来的假设相比较,取路径长度较小者为最短路径。重复上述过程,直到集合V中全部顶点加入到集合S中。

  ②设计数据结构 :

  1、图的存储结构:带权的邻接矩阵存储结构 。

  2、数组dist[n]:每个分量dist[i]表示当前所找到的从始点v到终点vi的最短路径的长度。初态为:若从v到vi有弧,则dist[i]为弧上权值;否则置dist[i]为∞。

  3、数组path[n]:path[i]是一个字符串,表示当前所找到的从始点v到终点vi的最短路径。初态为:若从v到vi有弧,则path[i]为vvi;否则置path[i]空串。

  4、数组s[n]:存放源点和已经生成的终点,其初态为只有一个源点v。

  ③Dijkstra算法——伪代码

 . 初始化数组dist、path和s;
. while (s中的元素个数<n)
2.1 在dist[n]中求最小值,其下标为k;
2.2 输出dist[j]和path[j];
2.3 修改数组dist和path;
2.4 将顶点vk添加到数组s中;

  ④C++代码实现

 #include<iostream>
#include<fstream>
#include<string>
using namespace std;
#define MaxSize 10
#define MAXCOST 10000
// 图的结构
template<class T>
struct Graph
{
T vertex[MaxSize];// 存放图中顶点的数组
int arc[MaxSize][MaxSize];// 存放图中边的数组
int vertexNum, arcNum;// 图中顶点数和边数
};
// 最短路径Dijkstra算法
void Dijkstra(Graph<string> G,int v)
{
int dist[MaxSize];// i到j的路径长度
string path[MaxSize];// 路径的串
int s[MaxSize];// 已找到最短路径的点的集合
bool Final[MaxSize];//Final[w]=1表示求得顶点V0至Vw的最短路径
// 初始化dist\path
for (int i = ; i < G.vertexNum; i++)
{
Final[i] = false;
dist[i] = G.arc[v][i];
if (dist[i] != MAXCOST)
path[i] = G.vertex[v] + G.vertex[i];
else
path[i] = " ";
}
s[] = v; // 初始化s
Final[v] = true;
int num = ;
while (num < G.vertexNum)
{
// 在dist中查找最小值元素
int k = ,min= MAXCOST;
for (int i = ; i < G.vertexNum; i++)
{
if (i == v)continue;
if (!Final[i] && dist[i] < min)
{
k = i;
min = dist[i];
}
}
cout << dist[k]<<path[k]<<endl;
s[num++] = k;// 将新生成的结点加入集合s
Final[k] = true;
// 修改dist和path数组
for (int i = ; i < G.vertexNum; i++)
{
if (!Final[i]&&dist[i] > dist[k] + G.arc[k][i])
{
dist[i] = dist[k] + G.arc[k][i];
path[i] = path[k] + G.vertex[i];
}
}
}
}
int main()
{
// 新建图
Graph<string> G;
string temp[]= { "v0","v1","v2","v3","v4" };
/*int length = sizeof(temp) / sizeof(temp[0]);
G.vertexNum = length;
G.arcNum = 7;*/
ifstream in("input.txt");
in >> G.vertexNum >> G.arcNum;
// 初始化图的顶点信息
for (int i = ; i < G.vertexNum; i++)
{
G.vertex[i] = temp[i];
}
//初始化图G的边权值
for (int i =; i <G.vertexNum; i++)
{
for (int j = ; j <G.vertexNum; j++)
{
G.arc[i][j] = MAXCOST;
}
}
for (int i = ; i < G.arcNum; i++)
{
int m, n,cost;
in >> m >> n >> cost;
G.arc[m][n] = cost;
}
Dijkstra(G, );
system("pause");
return ;
}
// input.txt
1

三、Floyd算法

  ①基本思想:对于从vi到vj的弧,进行n次试探:首先考虑路径vi,v0,vj是否存在,如果存在,则比较vi,vj和vi,v0,vj的路径长度,取较短者为从vi到vj的中间顶点的序号不大于0的最短路径。在路径上再增加一个顶点v1,依此类推,在经过n次比较后,最后求得的必是从顶点vi到顶点vj的最短路径。

  ②设计数据结构

  1、图的存储结构:带权的邻接矩阵存储结构  。

  2、数组dist[n][n]:存放在迭代过程中求得的最短路径长度。迭代公式:

最短路径-Dijkstra算法与Floyd算法

  3、数组path[n][n]:存放从vi到vj的最短路径,初始为path[i][j]="vivj"。

  ③C++代码实现

 #include<iostream>
#include<fstream>
#include<string>
using namespace std;
#define MaxSize 10
#define MAXCOST 10000
int dist[MaxSize][MaxSize];// 存放在迭代过程中求得的最短路径
string path[MaxSize][MaxSize];// vi到vj的最短路径
// 图的结构
template<class T>
struct Graph
{
T vertex[MaxSize];// 存放图中顶点的数组
int arc[MaxSize][MaxSize];// 存放图中边的数组
int vertexNum, arcNum;// 图中顶点数和边数
};
void Floyd(Graph<string> G)
{
// 初始化
for(int i=;i<G.vertexNum;i++)
for (int j = ; j < G.vertexNum; j++)
{
if (i == j) { dist[i][j] = ; path[i][j] = ""; }
dist[i][j] = G.arc[i][j];
if (dist[i][j] != MAXCOST)
path[i][j] = G.vertex[i] + G.vertex[j];
else
path[i][j] = " ";
}
// 进行n次迭代
for(int k=;k<G.vertexNum;k++)
for(int i=;i<G.vertexNum;i++)
for (int j = ; j < G.vertexNum; j++)
if (dist[i][k] + dist[k][j] < dist[i][j])
{
dist[i][j] = dist[i][k] + dist[k][j];
path[i][j] = path[i][k] + path[k][j];
}
}
int main()
{
int i, j, cost;
Graph<string> G;// 存放图的信息
ifstream in("input.txt");
in >> G.vertexNum >> G.arcNum;
string temp[] = { "a","b","c" };
// 初始化图的顶点信息
for (int i = ; i < G.vertexNum; i++)
{
G.vertex[i] = temp[i];
}
//初始化图G
for (i = ; i < G.vertexNum; i++)
{
for (j = ; j < G.vertexNum; j++)
{
G.arc[i][j] = MAXCOST;
}
}
//构建图G
for (int k = ; k <G.arcNum; k++)
{
in >> i >> j >> cost;
G.arc[i][j] = cost;
}
Floyd(G);
for (i = ; i < G.vertexNum; i++)
{
for (j = ; j < G.vertexNum; j++)
{
if (i != j)
{
cout << "顶点" << i << "到顶点" << j << "的最短路径长度为" << dist[i][j] << endl;
cout << "具体路径为:" << path[i][j] << endl;
}
}
}
system("pause");
return ;
}
// input.txt

参考文献:

[1]王红梅, 胡明, 王涛. 数据结构(C++版)[M]. 北京:清华大学出版社。