I have a problem with sympy
simplification. See the code below. When I substitute expression under sqrt
with something, it becomes "unbreakable". For example, in the last line of code I multiplied expression by f0
and simplified the result. f0
in numerator and sqrt(f0**2)
in denominator did not get simplified out even though f0
is declared as nonnegative
. What did I do wrong and how do I substitute expressions without having this effect?
我有简化问卷的问题。请参阅下面的代码。当我用sqrt替换sqrt下的表达式时,它变得“牢不可破”。例如,在代码的最后一行中,我将表达式乘以f0并简化了结果。即使f0被声明为非负,分母中的f0和分母中的sqrt(f0 ** 2)也没有被简化。我做错了什么,如何在没有这种效果的情况下替换表达式?
Code (pretty version with rendered equations):
代码(带渲染方程的漂亮版本):
>>> from __future__ import division
>>> from sympy import *
>>> from sympy.abc import pi
>>> init_printing(use_unicode=True)
>>> L0, Csum0, f0 = symbols("L0 C_{{\\Sigma}0} f0", nonnegative=True)
>>> equation = sqrt(L0)
>>> equation
____
╲╱ L₀
>>> substitute = solve(Eq(1/(2*pi*sqrt(L0)*sqrt(Csum0)), f0), L0, dict=1)[0]
>>> substitute
⎧ 1 ⎫
⎪L₀: ──────────────────────⎪
⎨ 2 2⎬
⎪ 4⋅C_{{\Sigma}0}⋅f₀ ⋅π ⎪
⎩ ⎭
>>> equation = equation.subs(substitute)
>>> equation
______________________
╱ 1
╱ ────────────────────
╱ 2 2
╲╱ C_{{\Sigma}0}⋅f₀ ⋅π
───────────────────────────
2
>>> simplify(equation*f0)
______________________
╱ 1
f₀⋅ ╱ ────────────────────
╱ 2 2
╲╱ C_{{\Sigma}0}⋅f₀ ⋅π
──────────────────────────────
2
1 个解决方案
#1
1
Cancelling f0/sqrt(f0**2)
is not legitimate when f0 is 0. To ensure this cancellation is allowed, declare f0 to be positive, not just nonnegative.
当f0为0时,取消f0 / sqrt(f0 ** 2)是不合法的。为了确保允许这种取消,将f0声明为正,而不仅仅是非负。
Also, importing pi
from sympy.abc makes pi a generic symbol with no specific meaning; in particular, it's not known to be positive. SymPy already has pi
(mathematical constant) built-in, and knows it's a positive number. So removing the import from sympy.abc
improves simplification.
此外,从sympy.abc导入pi使pi成为一个没有特定含义的通用符号;特别是,不知道是积极的。 SymPy已经内置了pi(数学常数),并且知道它是一个正数。因此,从sympy.abc中删除导入可以简化操作。
from sympy import *
L0, Csum0, f0 = symbols("L0 C_{{\\Sigma}0} f0", positive=True)
equation = sqrt(L0)
substitute = solve(Eq(1/(2*pi*sqrt(L0)*sqrt(Csum0)), f0), L0, dict=1)[0]
equation = equation.subs(substitute)
simplify(equation*f0)
returns
回报
1/(2*pi*sqrt(C_{{\Sigma}0}))
#1
1
Cancelling f0/sqrt(f0**2)
is not legitimate when f0 is 0. To ensure this cancellation is allowed, declare f0 to be positive, not just nonnegative.
当f0为0时,取消f0 / sqrt(f0 ** 2)是不合法的。为了确保允许这种取消,将f0声明为正,而不仅仅是非负。
Also, importing pi
from sympy.abc makes pi a generic symbol with no specific meaning; in particular, it's not known to be positive. SymPy already has pi
(mathematical constant) built-in, and knows it's a positive number. So removing the import from sympy.abc
improves simplification.
此外,从sympy.abc导入pi使pi成为一个没有特定含义的通用符号;特别是,不知道是积极的。 SymPy已经内置了pi(数学常数),并且知道它是一个正数。因此,从sympy.abc中删除导入可以简化操作。
from sympy import *
L0, Csum0, f0 = symbols("L0 C_{{\\Sigma}0} f0", positive=True)
equation = sqrt(L0)
substitute = solve(Eq(1/(2*pi*sqrt(L0)*sqrt(Csum0)), f0), L0, dict=1)[0]
equation = equation.subs(substitute)
simplify(equation*f0)
returns
回报
1/(2*pi*sqrt(C_{{\Sigma}0}))