1.题目描述
Say you have an array for which the ith element is the price of a given stock on day i.Design an algorithm to find the maximum profit. You may complete at most two transactions.Note:You may not engage in multiple transactions at the same time (ie, you must sell the stock before you buy again).
2.解法分析
限定了交易次数之后题目就需要我们略微思考一下了,由于有两次交易的机会,那么我们选定一个时间点ti,将此时间点作为两次交易的支点的话,必然有:
t0….ti之内满足最佳交易原则,ti-tn天也满足最佳交易原则,那么这就是一个动态规划的策略了,于是有下面的代码:
class Solution {public:int maxProfit(vector<int> &prices) {// Start typing your C/C++ solution below// DO NOT write int main() functionif(prices.size() <=1)return 0;vector<int>::iterator iter;for(iter=prices.begin();iter!=prices.end()-1;++iter){*iter = *(iter+1) - *iter;}prices.pop_back();vector<int>accum_forward;vector<int>accum_backward;int max = 0;int subMax = 0;for(iter=prices.begin();iter!=prices.end();++iter){subMax += *iter;if(subMax > max)max=subMax;elseif(subMax<0)subMax = 0;accum_forward.push_back(max);}vector<int>::reverse_iterator riter;max =0 ;subMax = 0;for(riter=prices.rbegin();riter!=prices.rend();++riter){subMax +=*riter;if(subMax >max)max = subMax;elseif(subMax<0)subMax=0;accum_backward.push_back(max);}max =0;int len = accum_forward.size();for(int i=0;i<len-1;++i){if((accum_forward[i]+accum_backward[len-i-2])>max)max = accum_forward[i]+accum_backward[len-i-2];}return max>accum_forward[len-1]?max:accum_forward[len-1];}};
ps:做完题之后提交,发现老是AC不了,有个case总是解决不了,本来以为是自己代码写得有问题,检查了半天没发现错误,于是开始看别人怎么写,结果发现别人AC的代码也过不了,猜想可能系统还是做得不完善,应该是后台的线程相互干扰了,过了一段时间果然同样的代码又可以AC了。在这段过程中,看别人写的代码,发现了一个比我简洁一些的写法,虽然我么你的复杂度是一样的,但是此君代码量比我的小一点,以后学习学习,另外,一直不知道vector还可以预先分配大小,从这个代码里面也看到了,算是有所收获。附代码如下:
class Solution {public:int maxProfit(vector<int> &prices) {// null checkint len = prices.size();if (len==0) return 0;vector<int> historyProfit;vector<int> futureProfit;historyProfit.assign(len,0);futureProfit.assign(len,0);int valley = prices[0];int peak = prices[len-1];int maxProfit = 0;// forward, calculate max profit until this timefor (int i = 0; i<len; ++i){valley = min(valley,prices[i]);if(i>0){historyProfit[i]=max(historyProfit[i-1],prices[i]-valley);}}// backward, calculate max profit from now, and the sum with historyfor (int i = len-1; i>=0; --i){peak = max(peak, prices[i]);if (i<len-1){futureProfit[i]=max(futureProfit[i+1],peak-prices[i]);}maxProfit = max(maxProfit,historyProfit[i]+futureProfit[i]);}return maxProfit;}};