【leetcode】Best Time to Buy and Sell 3 (hard) 自己做出来了 但别人的更好

时间:2023-01-16 15:59:13

Say you have an array for which the ith element is the price of a given stock on day i.

Design an algorithm to find the maximum profit. You may complete at most two transactions.

Note:
You may not engage in multiple transactions at the same time (ie, you must sell the stock before you buy again).

 

思路:

方案一:两次交易,得到最大收入。 设原本有length个数据,用n把数据分为[0 ~ n-1] 和 [n ~ length-1]两个部分,分别求最大收入,再加起来。结果超时了。

方案二:设数据是                        0  2  1  4  2  4  7 

求后一个数字和前一个数字的差值:   2 -1  3  -2  2  3

把连续符合相同的数累加                 2 -1  3  -2   5

这样处理后,假设有m个数据, 用n把数据分为[0 ~ n-1] 和 [n ~ m-1]两个部分, 分别求两个部分的最大连续子段和。

由于经过预处理,数据变少了很多,所以就AC了。

int maxProfit3(vector<int> &prices) {
if(prices.size() < 2)
{
return 0;
}

//第一步:把prices中的数 两两间的差值算出来 把差值符号相同的加在一起
vector<int> dealPrices;
vector
<int>::iterator it;
int last = prices[0];
int current;
int sumNum = 0;
for(it = prices.begin() + 1; it < prices.end(); it++)
{
current
= *it;
if((current - last >= 0 && sumNum >= 0) || (current - last <= 0 && sumNum <= 0))
{
sumNum
+= current - last;
}
else
{
dealPrices.push_back(sumNum);
sumNum
= current - last;
}
last
= current;
}
if(sumNum != 0)
{
dealPrices.push_back(sumNum);
}


//第二步
if(dealPrices.size() == 1)
{
return dealPrices[0] > 0 ? dealPrices[0] : 0;
}
else
{
int maxprofit = 0;
for(int n = 1; n < dealPrices.size(); n++)
{
//求前半段最大连续子段和
int maxSum1 = 0;
int maxSum2 = 0;
int curSum = 0;
for(int i = 0; i < n; i++)
{
curSum
= (curSum > 0) ? curSum + dealPrices[i] : dealPrices[i];
maxSum1
= (curSum > maxSum1) ? curSum : maxSum1;
}

//求后半段最大连续子段和
curSum = 0;
for(int i = n; i < dealPrices.size(); i++)
{
curSum
= (curSum > 0) ? curSum + dealPrices[i] : dealPrices[i];
maxSum2
= (curSum > maxSum2) ? curSum : maxSum2;
}

if(maxSum1 + maxSum2 > maxprofit)
{
maxprofit
= maxSum1 + maxSum2;
}
}
return maxprofit;
}

 

虽然我的AC了,但实际上还是个O(N^2)的算法,来看看大神们的O(N)代码。

第一种:https://oj.leetcode.com/discuss/14806/solution-sharing-commented-code-o-n-time-and-o-n-space

用两个数组left[],right[].

left记录当前值减去它前面的最小值的结果

right记录 当前值后面的最大值减去当前值的结果

把 left[i]+right[i+1] 针对所有的i遍历一遍 得到最大的值就是答案

public class Solution {
public int maxProfit(int[] prices) {
if (prices.length < 2) return 0;//one of zero days, cannot sell
// break the problem in to subproblems, what is the max profit if i decide to buy and sell one stock on or before day i
// and the other stock after day i

int[] left = new int[prices.length];//store the max profit so far for day [0,i] for i from 0 to n
int[] right = new int[prices.length];//store the max profit so far for the days [i,n] for i from 0 to n
int minl,maxprofit,maxr,profit;
maxprofit
= 0;//lower bound on profit
minl = Integer.MAX_VALUE;//minimum price so far for populating left array
for(int i = 0; i < left.length; i++){
if (prices[i] < minl) minl = prices[i];//check if this price is the minimum price so far
profit = prices[i] - minl;//get the profit of selling at current price having bought at min price so far
if (profit > maxprofit) maxprofit = profit;//if the profit is greater than the profit so far, update the max profit
left[i] = maxprofit;
}
maxprofit
= 0;//reset maxprofit to its lower bound
maxr = Integer.MIN_VALUE;//maximum price so far for populating the right array
//same line of reasoning as the above
for(int i = left.length - 1; i >= 0; i--){
if (prices[i] > maxr) maxr = prices[i];
profit
= maxr - prices[i];
if (profit > maxprofit) maxprofit = profit;
right[i]
= maxprofit;
}
//get the best by combining the subproblems as described above
int best = 0;
for(int i = 0; i < prices.length - 1; i++){
if (left[i] + right[i+1] > best) best = left[i] + right[i+1];
}
best
= best > maxprofit ? best : maxprofit;
// in total 3 passes required and 2 extra arrays of size n
return best;

}
}

 

第二种:更厉害,泛化到了k次交易的情况 而且代码特别短

https://oj.leetcode.com/discuss/15153/a-clean-dp-solution-which-generalizes-to-k-transactions

class Solution {
public:
int maxProfit(vector<int> &prices) {
// f[k, ii] represents the max profit up until prices[ii] (Note: NOT ending with prices[ii]) using at most k transactions.
// f[k, ii] = max(f[k, ii-1], prices[ii] - prices[jj] + f[k-1, jj]) { jj in range of [0, ii-1] }
// = max(f[k, ii-1], prices[ii] + max(f[k-1, jj] - prices[jj]))
// f[0, ii] = 0; 0 times transation makes 0 profit
// f[k, 0] = 0; if there is only one price data point you can't make any money no matter how many times you can trade
if (prices.size() <= 1) return 0;
else {
int K = 2; // number of max transation allowed
int maxProf = 0;
vector
<vector<int>> f(K+1, vector<int>(prices.size(), 0));
for (int kk = 1; kk <= K; kk++) {
int tmpMax = f[kk-1][0] - prices[0];
for (int ii = 1; ii < prices.size(); ii++) {
f[kk][ii]
= max(f[kk][ii-1], prices[ii] + tmpMax);
tmpMax
= max(tmpMax, f[kk-1][ii] - prices[ii]);
maxProf
= max(f[kk][ii], maxProf);
}
}
return maxProf;
}
}
};