写这篇博文用了很多时间和精力,如果这篇博文对你有帮助,希望您可以打赏给博主相国大人。哪怕只捐1毛钱,也是一种心意。通过这样的方式,也可以培养整个行业的知识产权意识。我可以和您建立更多的联系,并且在相关领域提供给您更多的资料和技术支持。
手机扫一扫,即可:
文章列表
推荐系统概述1
推荐系统概述2
推荐系统概述3
推荐系统概述4
推荐系统概述5
推荐系统概述6
推荐系统概述7
本篇是第5篇
本节主要内容:
1. 参考文献
[1.139] N. Srebro and T. Jaakkola, “Weighted low-rank approximations,” in Proc. 20th Int. Conf. Mach. Learn., 2003, pp. 720–727.
[1.141] X. Yang, H. Steck, and Y. Liu, “Circle-based recommendation in online social networks,” in Proc. 18th ACM SIGKDD Int. Conf. Knowl. Discovery Data Mining, 2012, pp. 1267–1275.
2. 基于圈的在线社交推荐
2.1 本文贡献
孙相国说:
对于豆瓣数据集来说,情景感知这一方面,是可以明显得到的,即用户的动作流就是一种。而对于trust-aware(信任感知),我以为,除了VIP之间的网络也许有体现外,非VIP也许并没有什么体现。因为豆瓣总体上来看,社交功能并不是非常发达。用户在豆瓣上进行社交的周期也不长。
本文在方法上,隶属于trust-aware这一范畴。这里的“圈”,circle,实际上就是基于特定用户视角下的group,由于从已有数据提取circle难度非常大(Unfortunately, in most existing multi-category rating datasets, a user’s social connections from all categories are mixed together.even if the circles were explicitly known,they may not correspond to particular item categories that a recommender system may be concerned with. )因此,本文的贡献在于,提供了推断circle的方法。并在此基础上,建立基于trust-aware的推荐系统。
We propose a set of algorithms to infer category specific circles of friends and to infer the trust value on each link based on user rating activities in each category. To infer the trust value of a link in a circle, we first estimate a user’s expertise level in a category based on the rating activities of herself as well as all users trusting her. We then assign to users trust values proportional to their expertise levels. The reconstructed trust circles are used to develop a low-rank matrix factorization type of RS.
2.2 相关工作
关于矩阵分解,论文在这里表达为:
这样最小化目标函数为
其中
本文在实验关节对比的baseline model是第36篇参考文献[18]A. P. Singh and G. J. Gordon. Relational learning via collective matrix factorization. In Proceedings of the 14th ACM SIGKDD international conference on Knowledge discovery and data mining (KDD’08), pages 650–658, 2008. 中提出的SocialMF Model.
The social network information is represented by a matrix
S∈Ru0×u0 , whereu0 is the number of users. The directed and weighted social relationship of useru with userv (e.g. useru trusts/knows/follows userv ) is represented by a positive valueSu,v∈(0,1] . An absent or unobserved social relationship is reflected bySu,v=sm , where typicallysm=0 . Each of the rows of the social network matrixS is normalized to 1, resulting in the new matrixS∗ withS∗u,v∝Su,v and∑vS∗u,v=1 for each useru . The idea underlying SocialMF is that neighbors in the social network may have similar interests. This similarity is enforced by the second term in the following objective function, which says that user profileQu should be similar to the (weighted) average of his/her friends’ profilesQv (measured in terms of the square error):
上式第二项中,
2.3 基于圈的推荐模型
本文认为,一个用户在某些类别中,可能会信任他的某个朋友,但未必在其他类别中,也信任同样的这个朋友。(孙相国:我们也许可以根据电影类别,来划分R矩阵,正如同本文根据category来划分R矩阵一样)
2.3.1 信任圈的推断
2.3.2 信任值的设定
这一节,论文提供了三种获取设定信任值的方法。
(1)均衡信任
(2)基于专家的信任
The goal is to assign a higher trust value or weight to the friends that are experts in the circle / category. As an approximation to their level of expertise, we use the numbers of ratings they assigned to items in the category. The idea is that an expert in a category may have rated more items in that category than users who are not experts in that category.
设用户
方法1:
认为用户
归一化得到:
方法2:
In this case, the expertise level of user
v in categoryc is the product of two components: the first component is the number of ratings thatv assigned in categoryc , the second component is some voting value in categoryc from all her followers inFv(c) . The intuition is that if most ofv ’s followers have lots of ratings in categoryc , and they all trustv , it is a good indication thatv is an expert in categoryc .
(3)信任分割
从(1)(2)我们看到,
上面公式的意思是,不仅仅只考虑当前领域
2.3.3 模型训练
单个领域模型训练
参见2.2节的公式2,我们现在要用这个公式分别对各个领域
采用梯度下降法进行参数估计
全局模型训练
考虑到数据的稀疏性,我们希望把上面的训练公式中第一行扩展到全局。即:
后面的章节,请阅读《[推荐系统概述6](http://blog.csdn.net/github_36326955/article/details/71408429》
如果这篇博文对你有帮助,希望您可以打赏给博主相国大人。我可以和您建立更多的联系,并且在相关领域提供给您更多的资料和技术支持。
手机扫一扫,即可: