package main import (
"fmt"
"runtime"
"sync"
) var (
count int32
wg sync.WaitGroup
) func main() {
wg.Add()
go incCount()
go incCount()
wg.Wait()
fmt.Println(count)
} func incCount() {
defer wg.Done()
for i := ; i < ; i++ {
value := count
runtime.Gosched()
value++
count = value
}
}
这是一个资源竞争的例子。我们可以多运行几次这个程序,会发现结果可能是 2 ,也可以是 3 ,也可能是 4 。因为共享资源count
变量没有任何同步保护,所以两个goroutine都会对其进行读写,会导致对已经计算好的结果覆盖,以至于产生错误结果。这里我们演示一种可能,两个goroutine我们暂时称之为g1和g2。
g1读取到count为 0 。
然后g1暂停了,切换到g2运行,g2读取到count也为 0 。
g2暂停,切换到g1,g1对count+1,count变为 1 。
g1暂停,切换到g2,g2刚刚已经获取到值 0 ,对其+1,最后赋值给count还是 1 。
有没有注意到,刚刚g1对count+1的结果被g2给覆盖了,两个goroutine都+1还是 1 。
不再继续演示下去了,到这里结果已经错了,两个goroutine相互覆盖结果。我们这里的runtime.Gosched()
是让当前goroutine暂停的意思。退回执行队列,让其他等待的goroutine运行,目的是让我们演示资源竞争的结果更明显。注意,这里还会牵涉到CPU问题,多核会并行,那么资源竞争的效果更明显。
所以我们对于同一个资源的读写必须是原子化的,也就是说,同一时间只能有一个goroutine对共享资源进行读写操作。
共享资源竞争的问题,非常复杂,并且难以察觉,好在Go提供了一个工具来帮助我们检查,这个就是go build -race
命令。我们在当前项目目录下执行这个命令,生成一个可以执行文件,然后再运行这个可执行文件,就可以看到打印出的检测信息。
go build -race
多加了一个-race
标志,这样生成的可执行程序就自带了检测资源竞争的功能。下面我们运行,也是在终端运行。
./hello
我这里示例生成的可执行文件名是hello
,所以是这么运行的。这时候,我们看终端输出的检测结果。
hello ./hello
==================
WARNING: DATA RACE
Read at 0x0000011a5118 by goroutine :
main.incCount()
/Users/xxx/code/go/src/flysnow.org/hello/main.go: +0x76 Previous write at 0x0000011a5118 by goroutine :
main.incCount()
/Users/xxx/code/go/src/flysnow.org/hello/main.go: +0x9a Goroutine (running) created at:
main.main()
/Users/xxx/code/go/src/flysnow.org/hello/main.go: +0x77 Goroutine (finished) created at:
main.main()
/Users/xxx/code/go/src/flysnow.org/hello/main.go: +0x5f
================== Found data race(s)
看,找到一个资源竞争,连在那一行代码出了问题,都标示出来了。goroutine 7在代码 25 行读取共享资源value := count
,而这时goroutine 6正在代码 28 行修改共享资源count = value
,而这两个goroutine都是从main函数启动的,在 16、17 行,通过go关键字。
既然我们已经知道共享资源竞争的问题,是因为同时有两个或者多个goroutine对其进行了读写,那么我们只要保证,同时只有一个goroutine读写不就可以了。现在我们就看下传统解决资源竞争的办法——对资源加锁。
Go语言提供了atomic包和sync包里的一些函数对共享资源同步加锁,我们在此只看下sync:
sync包里提供了一种互斥型的锁,可以让我们自己灵活地控制那些代码,同时只能有一个goroutine访问,被sync互斥锁控制的这段代码范围,被称之为临界区。临界区的代码,同一时间,只能又一个goroutine访问。刚刚那个例子,我们还可以这么改造。
package main import (
"fmt"
"runtime"
"sync"
) var (
count int32
wg sync.WaitGroup
mutex sync.Mutex
) func main() {
wg.Add()
go incCount()
go incCount()
wg.Wait()
fmt.Println(count)
} func incCount() {
defer wg.Done()
for i := ; i < ; i++ {
mutex.Lock()
value := count
runtime.Gosched()
value++
count = value
mutex.Unlock()
}
}
实例中,新声明了一个互斥锁mutex sync.Mutex
。这个互斥锁有两个方法,一个是mutex.Lock()
,一个是mutex.Unlock()
。这两个之间的区域就是临界区,临界区的代码是安全的。
示例中我们先调用mutex.Lock()
对有竞争资源的代码加锁,这样当一个goroutine进入这个区域的时候,其他goroutine就进不来了,只能等待,一直到调用mutex.Unlock()
释放这个锁为止。
这种方式比较灵活,可以让代码编写者任意定义需要保护的代码范围,也就是临界区。除了原子函数和互斥锁,Go还为我们提供了更容易在多个goroutine同步的功能,这就是通道chan。