Kruskal算法

时间:2021-11-12 16:22:11

1、基本思想:设无向连通网为G=(V, E),令G的最小生成树为T=(U, TE),其初态为U=V,TE={ },然后,按照边的权值由小到大的顺序,考察G的边集E中的各条边。若被考察的边的两个顶点属于T的两个不同的连通分量,则将此边作为最小生成树的边加入到T中,同时把两个连通分量连接为一个连通分量;若被考察边的两个顶点属于同一个连通分量,则舍去此边,以免造成回路,如此下去,当T中的连通分量个数为1时,此连通分量便为G的一棵最小生成树。 
2、示例:

Kruskal算法

3、代码实现如下:

  1. #include "stdio.h"
  2. #include "stdlib.h"
  3. struct edge
  4. {
  5. int m;
  6. int n;
  7. int d;
  8. }a[5010];
  9. int cmp(const void *a,const void *b) //按升序排列
  10. {
  11. return ((struct edge *)a)->d>((struct edge *)b)->d;
  12. }
  13. int main(void)
  14. {
  15. int i,n,t,num,min,k,g,x[100];
  16. printf("请输入顶点的个数:");
  17. scanf("%d",&n);
  18. t=n*(n-1)/2;
  19. for(i=1;i<=n;i++)
  20. x[i]=i;
  21. printf("请输入每条边的起始端点、权值:/n");
  22. for(i=0;i<t;i++)
  23. scanf("%d %d %d",&a[i].m,&a[i].n,&a[i].d); //输入每条边的权值
  24. qsort(a,t,sizeof(a[0]),cmp);
  25. min=num=0;
  26. for(i=0;i<t && num<n-1;i++)
  27. {
  28. for(k=a[i].m;x[k]!=k;k=x[k])  //判断线段的起始点所在的集合
  29. x[k]=x[x[k]];
  30. for(g=a[i].n;x[g]!=g;g=x[g])  //判断线段的终点所在的集合
  31. x[g]=x[x[g]];
  32. if(k!=g)  //如果线段的两个端点所在的集合不一样
  33. {
  34. x[g]=k;
  35. min+=a[i].d;
  36. num++;
  37. printf("最小生成树中加入边:%d %d/n",a[i].m,a[i].n);
  38. }
  39. }
  40. printf("最小生成树的权值为:%d/n",min);
  41. system("pause");
  42. return 0;
  43. }