问题描述
A number sequence is defined as follows:f(1) = 1, f(2) = 1, f(n) = (A * f(n - 1) + B * f(n - 2)) mod 7.Given A, B, and n, you are to calculate the value of f(n).
输入说明
The input consists of multiple test cases. Each test case contains 3 integers A, B and n on a single line (1 <= A, B <= 1000, 1 <= n <= 100,000,000). Three zeros signal the end of input and this test case is not to be processed.
输出说明
For each test case, print the value of f(n) on a single line.
输入样例
1 1 3
1 2 10
0 0 0
输出样例
2
5 这道题之前用递归做的,结果runtimeError了,估计递归非常慢,想想会超出堆栈.后来百度,原来是个循环节的概念,因为有mod 7,所以f(n)取值是0-6,7个取值,而f(n)又由上头两个决定,因此有7*7=49种答案,因此在50以内必然出现循环,所以我们用数组模拟前49组数组,后面的数据只要mod (模除)循环节就可以了,对应的的数组里头取值,下面附上代码 ------------------------------------下面附上AC代码-----------------------
#include <iostream>
using namespace std;
int main()
{
int A,B;
int N;
int f[50];
while(cin>>A>>B>>N)
{
if(A==0&&B==0&&N==0)break;
int i;
f[1]=f[2]=1;
for(i=3;i!=50;++i)
{
f[i]=(A*f[i-1]+B*f[i-2])%7;
if(f[i]==1&&f[i-1]==1)break;
}
N=N%(i-2);//理解i-2,求的循环节N
if(N==0)cout<<f[(i-2)]<<endl;
else cout<<f[N]<<endl;
}
return 0;
}