Java IO 过滤流 BufferedInput/OutputStream

时间:2021-08-02 15:19:57

Java IO 过滤流 BufferedInput/OutputStream

@author ixenos

概念


BufferedInput/OutputStream是实现缓存的过滤流,他们分别是FilterInput/OutputStream的子类。

BufferedInputStream工作流程


stream-->buf--read buf-->I

1.当一个BufferedInputStream被创建时,一个内部的缓冲区 byte[] buf = new byte[size] 也被建立,size默认是8192也就是默认创建一个8kb大小的缓存空间,

工作时由内部方法fill()预先在缓冲区存储来自连接输入流的数据最终的数据来源由底层流决定,比如new FileInputStream("a.txt")来源就是a.txt,而我们过滤流的数据来源是节点流!

     private static int DEFAULT_BUFFER_SIZE = 8192; //默认缓冲数组长度大小,折合单位有8kb
protected volatile byte buf[]; //底层维护的缓冲数组变量 public BufferedInputStream(InputStream in) {
this(in, DEFAULT_BUFFER_SIZE); //默认8192
} public BufferedInputStream(InputStream in, int size) {
super(in); //引用基类FilterInputStream的构造方法,基类有底层流变量
if (size <= 0) {
throw new IllegalArgumentException("Buffer size <= 0");
}
buf = new byte[size]; //初始化缓冲数组,指定大小为size
}

2.当BufferedInputStream的read方法被调用时,数据将从缓冲区中移出,而不是底层的输入流;

3.当BufferedInputStream缓冲区数据用完时,他自动从底层输入流中补充数据

  read()源码分析:

    //返回下一个数据字节,如果到达流末尾则返回-1,数据流向返回值!
1 public synchronized int read() throws IOException {
if (pos >= count) { //当缓存指针等于或者超过count时,说明buf已满
fill(); //fill()从节点流中读取数据存放到buf缓冲区
if (pos >= count)
return -1;
}
return getBufIfOpen()[pos++] & 0xff; //得到非空buf缓冲当前索引为pos位置的一字节数据,pos++ 缓冲区指针移动一位
} //getBufIfOpen对buf进行非空判断
private byte[] getBufIfOpen() throws IOException {
byte[] buffer = buf; //用一个引用变量引用buf
if (buffer == null)
throw new IOException("Stream closed");
return buffer; //返回buffer,实质上指向buf
}

  read(byte[], int, int)源码分析 :

//pos是起始/下一次读取buffer的位置,
//markpos是最新一次已读取的位置,
//count是缓冲数组被填充的大小-1(因为是作为index存在的,从0开始)
//len是b要读取的最大字节数
     //返回读取的字节数,如果流到达末尾返回-1,数据流向b数组!
public synchronized int read(byte b[], int off, int len)
throws IOException
{ /*这里只做检查,流关闭则提前抛出,以避免拖到fill()中的getBufIfOpen()再抛出的情况
private byte[] getBufIfOpen() throws IOException {
byte[] buffer = buf; //引用传递,指向当前buf变量指向的内存
if (buffer == null) //就为了这个非空判断而已
throw new IOException("Stream closed");
return buffer; //这里返回值是没人接收的,方法结束抛弃局部变量buffer,不对buf造成影响
}
*/
getBufIfOpen(); // Check for closed stream 关闭流将抛出异常
//指定数组的越界判断
if ((off | len | (off + len) | (b.length - (off + len))) < 0) {
throw new IndexOutOfBoundsException();
} else if (len == 0) {
return 0;
} int n = 0;
//循环写数据到b,直到buffer数据不足返回-1,此时nread已累加记录
for (;;) {
int nread = read1(b, off + n, len - n);//读缓冲区数据到b
if (nread <= 0)
return (n == 0) ? nread : n;
n += nread;
//读完指定长度时返回
if (n >= len)
return n;
// if not closed but no bytes available, return
//没读完指定长度,但缓冲区没数据时返回当前n
InputStream input = in;
if (input != null && input.available() <= 0)
return n;
}
} /**
* read1方法是该read底层用来读取缓冲区buf的数据进指定数组的方法
* 而fill方法又是read1方法中用来读取底层字节流到缓冲区buf的方法
* 读取数据写进指定数组的一部分,必要时每次从底层流尽量读取数据
*/
private int read1(byte[] b, int off, int len) throws IOException {
int avail = count - pos; //开始时为0
if (avail <= 0) {
/* 如果所请求的长度大于等于缓冲区,并且还没读取过buf
50         (即刚开始使用时,扩充缓冲区成本不值得,回归底层流),
就没必要用缓冲区了,将直接从底层流读取数据。
*/
if (len >= getBufIfOpen().length && markpos < 0) {
//直接调用底层流的read方法,写进指定的内存b
return getInIfOpen().read(b, off, len);
}
//请求fill()方法来读取底层流数据(多次使用后如果长度大于缓冲区,为了数据保护,将扩充缓冲区)
fill();
avail = count - pos; //avail是
if (avail <= 0) return -1;
}
int cnt = (avail < len) ? avail : len; //cnt是要写入b的字节数,如果b中剩余字节数avail比要刷入的数据长度len大,则cnt为len
System.arraycopy(getBufIfOpen(), pos, b, off, cnt); //复制指定范围非空buf数据到b
pos += cnt;
return cnt;
} //fill()方法填充空间,是底层用来读取流数据到缓冲区buf
/**
* Fills the buffer with more data, taking into account
* shuffling and other tricks for dealing with marks.
* Assumes that it is being called by a synchronized method.
* This method also assumes that all data has already been read in,
* hence pos > count.
*/
private void fill() throws IOException {
byte[] buffer = getBufIfOpen();
//pos是起始/下一次读取buffer的位置,markpos是最新一次已读取的位置,count是缓冲数组被填充的大小-1(因为是作为index存在的,从0开始)
//起始小于零表明没有pos移动,从源码可知
if (markpos < 0)
pos = 0; /* no mark: throw away the buffer */
//当pos比buffer更长时,即
else if (pos >= buffer.length) /* no room left in buffer */
//markpos也有前移时,数组自我复制丢弃早期部分
if (markpos > 0) { /* can throw away early part of the buffer */
int sz = pos - markpos;
System.arraycopy(buffer, markpos, buffer, 0, sz);
pos = sz;
markpos = 0;
//buffer大小超过理论规模时,重置,通过改变pos“丢弃”缓冲区内容
} else if (buffer.length >= marklimit) {
markpos = -1; /* buffer got too big, invalidate mark */
pos = 0; /* drop buffer contents */
//buffer大小超过本地VM内存限制:MAX_BUFFER_SIZE = Integer.MAX_VALUE - 8
} else if (buffer.length >= MAX_BUFFER_SIZE) {
throw new OutOfMemoryError("Required array size too large");
} else { /* grow buffer */ //没有顾忌时,扩充缓冲区大小
int nsz = (pos <= MAX_BUFFER_SIZE - pos) ?
pos * 2 : MAX_BUFFER_SIZE;
if (nsz > marklimit)
nsz = marklimit;
byte nbuf[] = new byte[nsz];
System.arraycopy(buffer, 0, nbuf, 0, pos);
/*AtomicReferenceFieldUpdater是一个基于反射的工具类,
它能对指定类的指定的volatile引用字段进行原子更新。
(注意这个字段不能是private的) ,
从源码知getBufIfOpen返回的是值传递的protected volatile byte buf[]
*/
if (!bufUpdater.compareAndSet(this, buffer, nbuf)) {
// Can't replace buf if there was an async close.
// Note: This would need to be changed if fill()
// is ever made accessible to multiple threads.
// But for now, the only way CAS can fail is via close.
// assert buf == null;
throw new IOException("Stream closed");
}
buffer = nbuf;
}
//pos小于buf.length时,从底层流到缓冲区,使用InputStream的read(byte[])方法
count = pos; int n = getInIfOpen().read(buffer, pos, buffer.length - pos);
if (n > 0)
count = n + pos;
}

总结:通过以上源码我们可以看到:

  1)read(byte[])方法运行初始就用getBufIfOpen判断流关闭没有,因为缓冲流关闭后缓冲区失效,getBufIfOpen将抛出异常;

  2)read(byte[])方法中的read1方法是该read底层,用来读取缓冲区buf的数据进指定数组的方法,而fill方法又是read1方法中,用来读取底层字节流到缓冲区buf的方法,层层封装外包

  3)read(byte[]) <-- read1(byte[]) <-- fill() <-- getInIfOpen().read(buf) <-- InputStream 层层外包,

    这里getInIfOpen()返回一个非空底层流InputStream,并调用底层流的read(byte[])方法读取流数据到缓冲区buf,

    所以当我们只是关闭底层流这些嵌套流也跟着“关闭”,但是会留下缓冲数组buf,这有时可以利用,有时要注意关闭避免浪费资源;

     以下是close()的源码分析:

  1     public void close() throws IOException {
2 byte[] buffer;
3 while ( (buffer = buf) != null) {
4 if (bufUpdater.compareAndSet(this, buffer, null)) { // 会将缓冲区buf的数据清空并释放缓冲区,也就是buf=null
5 InputStream input = in; //引用传递,input和in同指向节点流对象
6 in = null; //修改强引用,使底层流引用变量失效,即任何人都不能通过in去引用底层流了
7 if (input != null) //然后交给input单独来非空判断和执行关闭操作
8 input.close(); //调用节点流的close(),和native相关
9 return;
10 }
11 // Else retry in case a new buf was CASed in fill()
12 }
13 }

  4)当BufferedInputStream缓冲区数据用完时,自动从底层输入流中补充数据(stream-->buf--read buf-->I)

  5)关于read(byte[])缓冲区buf空间大小限制性能的问题:

    (1)一开始使用缓冲流时,如果请求填充的长度len大于缓冲区大小buf.length,将直接使用底层流的read(byte[])方法,原因是扩充缓冲区的成本大于缓冲带来的便利;

    (2)多次使用缓冲流后,一样如果请求填充的长度len大于缓冲区大小buf.length,为了数据的完整安全,在内部的fill()方法中扩充缓冲区大小,而这要付出相应成本限制性能,所以缓冲区大小要谨慎设定。

  6)在缓冲区可用数据小于目标数组b的时候,使用System.arraycopy整体将缓冲区从pos位置起的数据覆盖到目标数组上    

       int cnt = (avail < len) ? avail : len; //cnt是要写入b的字节数,如果b中剩余字节数avail比要刷入的数据长度len大,则cnt为len

       System.arraycopy(getBufIfOpen(), pos, b, off, cnt); //复制指定范围非空buf数据到b

BufferedOutputStream工作流程


流程:I--write buf-->buf-->stream,我们通过两个write输出我们的数据,而数据暂时积聚在buf中,等待flush

1.当一个BufferedOutputStream被创建时,一个内部的缓冲区 byte[] buf = new byte[size] 也被建立,size默认是8192也就是默认创建一个8kb大小的缓存空间,

 最终的数据去向由底层流决定,比如new FileOutputStream("a.txt")去向就是a.txt,而我们过滤流的数据来源是节点流!

2.BufferedOutputStream在内部缓冲区存储程序的输出数据,这样就不会每次调用write方法时,就把数据写到底层的输出流;

3.当BufferedOutputStream的内部缓冲区或者它被刷新(flush),数据一次性写到底层的输出流

  constructor源码分析:

     public BufferedOutputStream(OutputStream out) {
this(out, 8192);
} //这里与BufferedInputStream同理,不再赘述
public BufferedOutputStream(OutputStream out, int size) {
super(out);
if (size <= 0) {
throw new IllegalArgumentException("Buffer size <= 0");
}
buf = new byte[size];
}

  write(int)源码分析:

     public synchronized void write(int b) throws IOException {
if (count >= buf.length) { //当count++到buf.length的长度,表明缓冲区已满
flushBuffer(); //刷出缓存到底层字节输出流
}
buf[count++] = (byte)b; //此时缓冲区本身未满或者flush后空了(count=0),先把b放在缓冲区buf中
} /*刷出内部的缓存到底层字节输出流*/
private void flushBuffer() throws IOException {
if (count > 0) {
out.write(buf, 0, count); //实质上利用底层流的write(byte[])
count = 0; //全部刷出,count=0,作为标志位与buf[count++]联合来刷新
}
}

  write(byte[], int, int)源码分析:

      public synchronized void write(byte b[], int off, int len) throws IOException {

          /* 在指定数组数据到buf时,如果数据的长度比buf长,
可能在传输过程中需要发出超长len,所以将buf中之前的工作数据刷出,
然后直接调用底层流的write(byte[])方法输出,
这个判断暗地里也限制了初始时就len过长的情况(count=0)
*/
if (len >= buf.length) {
flushBuffer();
out.write(b, off, len);
return;
} /*表明缓冲区已满,刷出*/
if (len > buf.length - count) {
flushBuffer();
} /*在经过上面的判断后,说明len<buf.length且count>0,
已使用过buf,只是剩余空间不足以承载,刷出数据后,
利用arraycopy将数据存入buf
*/
System.arraycopy(b, off, buf, count, len);
count += len; //count增加填充的字节数
}

  flush()源码分析:

     public synchronized void flush() throws IOException {
/*刷出缓冲区的数据到基流*/
flushBuffer(); /* 调用基流的flush方法,这里考虑到了嵌套流,
普通的节点流flush方法是空方法,
如果嵌套的依旧是一个带缓存的流,那么可递归每一层的flush
这迫使任何缓存输出的字节被写到底层流上
*/
out.flush();
}

总结:通过以上源码我们可以看到:

  1)write(int)时,若buf已满,将自动刷出buf中的数据到流;

  2)刷出到流的内部方法flushBuffer利用的是基流的write(byte[], int, int)方法;

  3)没有close方法,只给关闭底层流,缓存输出流无需关闭;

  4)flush方法调用基流的flush方法,这里考虑到了嵌套流,因为普通的节点流flush方法是空方法!

    如果嵌套的依旧是一个带缓存的流那么可递归flush这迫使任何缓存输出的字节被写到底层流上

  5) write(byte[], int, int)时,

   (1)如果数据的长度比buf长,可能在传输过程中需要发出超长len,所以将buf中之前的工作数据刷出,然后直接调用底层流的write(byte[])方法自行输出,这个判断暗地里也限制了初始时就len过长的情况(count=0);

   (2)无需刷出缓存的情况下,使用arraycopy把要输出的byte[]数据,从count位置开始,拷贝到buf中。

和节点流ByteArrayInput/OutputStream的区别


1.ByteArrayInputStream是节点流;BufferedInputStream是过滤流;

2.ByteArrayInputStream需要使用者提供一个缓冲数组,是自带缓冲功能的流,由构造器传入;BufferedInputStream默认自己创建一个缓冲数组,默认4096长度,即4kB大小;

3.ByteArrayInputStream利用继承关系扩展流的功能;BufferedInputStream利用装饰模式扩展流的功能;

4.类中方法的原理都差不多,具体参阅源码

 /*
* Copyright (c) 1994, 2013, Oracle and/or its affiliates. All rights reserved.
* ORACLE PROPRIETARY/CONFIDENTIAL. Use is subject to license terms.
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*/ package java.io; /**
* A <code>ByteArrayInputStream</code> contains
* an internal buffer that contains bytes that
* may be read from the stream. An internal
* counter keeps track of the next byte to
* be supplied by the <code>read</code> method.
* <p>
* Closing a <tt>ByteArrayInputStream</tt> has no effect. The methods in
* this class can be called after the stream has been closed without
* generating an <tt>IOException</tt>.
*
* @author Arthur van Hoff
* @see java.io.StringBufferInputStream
* @since JDK1.0
*/
public
class ByteArrayInputStream extends InputStream { /**
* An array of bytes that was provided
* by the creator of the stream. Elements <code>buf[0]</code>
* through <code>buf[count-1]</code> are the
* only bytes that can ever be read from the
* stream; element <code>buf[pos]</code> is
* the next byte to be read.
*/
protected byte buf[]; /**
* The index of the next character to read from the input stream buffer.
* This value should always be nonnegative
* and not larger than the value of <code>count</code>.
* The next byte to be read from the input stream buffer
* will be <code>buf[pos]</code>.
*/
protected int pos; /**
* The currently marked position in the stream.
* ByteArrayInputStream objects are marked at position zero by
* default when constructed. They may be marked at another
* position within the buffer by the <code>mark()</code> method.
* The current buffer position is set to this point by the
* <code>reset()</code> method.
* <p>
* If no mark has been set, then the value of mark is the offset
* passed to the constructor (or 0 if the offset was not supplied).
*
* @since JDK1.1
*/
protected int mark = 0; /**
* The index one greater than the last valid character in the input
* stream buffer.
* This value should always be nonnegative
* and not larger than the length of <code>buf</code>.
* It is one greater than the position of
* the last byte within <code>buf</code> that
* can ever be read from the input stream buffer.
*/
protected int count; /**
* Creates a <code>ByteArrayInputStream</code>
* so that it uses <code>buf</code> as its
* buffer array.
* The buffer array is not copied.
* The initial value of <code>pos</code>
* is <code>0</code> and the initial value
* of <code>count</code> is the length of
* <code>buf</code>.
*
* @param buf the input buffer.
*/
public ByteArrayInputStream(byte buf[]) {
this.buf = buf;
this.pos = 0;
this.count = buf.length;
} /**
* Creates <code>ByteArrayInputStream</code>
* that uses <code>buf</code> as its
* buffer array. The initial value of <code>pos</code>
* is <code>offset</code> and the initial value
* of <code>count</code> is the minimum of <code>offset+length</code>
* and <code>buf.length</code>.
* The buffer array is not copied. The buffer's mark is
* set to the specified offset.
*
* @param buf the input buffer.
* @param offset the offset in the buffer of the first byte to read.
* @param length the maximum number of bytes to read from the buffer.
*/
public ByteArrayInputStream(byte buf[], int offset, int length) {
this.buf = buf;
this.pos = offset;
this.count = Math.min(offset + length, buf.length);
this.mark = offset;
} /**
* Reads the next byte of data from this input stream. The value
* byte is returned as an <code>int</code> in the range
* <code>0</code> to <code>255</code>. If no byte is available
* because the end of the stream has been reached, the value
* <code>-1</code> is returned.
* <p>
* This <code>read</code> method
* cannot block.
*
* @return the next byte of data, or <code>-1</code> if the end of the
* stream has been reached.
*/
public synchronized int read() {
return (pos < count) ? (buf[pos++] & 0xff) : -1;
} /**
* Reads up to <code>len</code> bytes of data into an array of bytes
* from this input stream.
* If <code>pos</code> equals <code>count</code>,
* then <code>-1</code> is returned to indicate
* end of file. Otherwise, the number <code>k</code>
* of bytes read is equal to the smaller of
* <code>len</code> and <code>count-pos</code>.
* If <code>k</code> is positive, then bytes
* <code>buf[pos]</code> through <code>buf[pos+k-1]</code>
* are copied into <code>b[off]</code> through
* <code>b[off+k-1]</code> in the manner performed
* by <code>System.arraycopy</code>. The
* value <code>k</code> is added into <code>pos</code>
* and <code>k</code> is returned.
* <p>
* This <code>read</code> method cannot block.
*
* @param b the buffer into which the data is read.
* @param off the start offset in the destination array <code>b</code>
* @param len the maximum number of bytes read.
* @return the total number of bytes read into the buffer, or
* <code>-1</code> if there is no more data because the end of
* the stream has been reached.
* @exception NullPointerException If <code>b</code> is <code>null</code>.
* @exception IndexOutOfBoundsException If <code>off</code> is negative,
* <code>len</code> is negative, or <code>len</code> is greater than
* <code>b.length - off</code>
*/
public synchronized int read(byte b[], int off, int len) {
if (b == null) {
throw new NullPointerException();
} else if (off < 0 || len < 0 || len > b.length - off) {
throw new IndexOutOfBoundsException();
} if (pos >= count) {
return -1;
} int avail = count - pos;
if (len > avail) {
len = avail;
}
if (len <= 0) {
return 0;
}
System.arraycopy(buf, pos, b, off, len);
pos += len;
return len;
} /**
* Skips <code>n</code> bytes of input from this input stream. Fewer
* bytes might be skipped if the end of the input stream is reached.
* The actual number <code>k</code>
* of bytes to be skipped is equal to the smaller
* of <code>n</code> and <code>count-pos</code>.
* The value <code>k</code> is added into <code>pos</code>
* and <code>k</code> is returned.
*
* @param n the number of bytes to be skipped.
* @return the actual number of bytes skipped.
*/
public synchronized long skip(long n) {
long k = count - pos;
if (n < k) {
k = n < 0 ? 0 : n;
} pos += k;
return k;
} /**
* Returns the number of remaining bytes that can be read (or skipped over)
* from this input stream.
* <p>
* The value returned is <code>count&nbsp;- pos</code>,
* which is the number of bytes remaining to be read from the input buffer.
*
* @return the number of remaining bytes that can be read (or skipped
* over) from this input stream without blocking.
*/
public synchronized int available() {
return count - pos;
} /**
* Tests if this <code>InputStream</code> supports mark/reset. The
* <code>markSupported</code> method of <code>ByteArrayInputStream</code>
* always returns <code>true</code>.
*
* @since JDK1.1
*/
public boolean markSupported() {
return true;
} /**
* Set the current marked position in the stream.
* ByteArrayInputStream objects are marked at position zero by
* default when constructed. They may be marked at another
* position within the buffer by this method.
* <p>
* If no mark has been set, then the value of the mark is the
* offset passed to the constructor (or 0 if the offset was not
* supplied).
*
* <p> Note: The <code>readAheadLimit</code> for this class
* has no meaning.
*
* @since JDK1.1
*/
public void mark(int readAheadLimit) {
mark = pos;
} /**
* Resets the buffer to the marked position. The marked position
* is 0 unless another position was marked or an offset was specified
* in the constructor.
*/
public synchronized void reset() {
pos = mark;
} /**
* Closing a <tt>ByteArrayInputStream</tt> has no effect. The methods in
* this class can be called after the stream has been closed without
* generating an <tt>IOException</tt>.
*/
public void close() throws IOException {
} }

ByteArrayInputStream

 /*
* Copyright (c) 1994, 2013, Oracle and/or its affiliates. All rights reserved.
* ORACLE PROPRIETARY/CONFIDENTIAL. Use is subject to license terms.
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*/ package java.io; import java.util.Arrays; /**
* This class implements an output stream in which the data is
* written into a byte array. The buffer automatically grows as data
* is written to it.
* The data can be retrieved using <code>toByteArray()</code> and
* <code>toString()</code>.
* <p>
* Closing a <tt>ByteArrayOutputStream</tt> has no effect. The methods in
* this class can be called after the stream has been closed without
* generating an <tt>IOException</tt>.
*
* @author Arthur van Hoff
* @since JDK1.0
*/ public class ByteArrayOutputStream extends OutputStream { /**
* The buffer where data is stored.
*/
protected byte buf[]; /**
* The number of valid bytes in the buffer.
*/
protected int count; /**
* Creates a new byte array output stream. The buffer capacity is
* initially 32 bytes, though its size increases if necessary.
*/
public ByteArrayOutputStream() {
this(32);
} /**
* Creates a new byte array output stream, with a buffer capacity of
* the specified size, in bytes.
*
* @param size the initial size.
* @exception IllegalArgumentException if size is negative.
*/
public ByteArrayOutputStream(int size) {
if (size < 0) {
throw new IllegalArgumentException("Negative initial size: "
+ size);
}
buf = new byte[size];
} /**
* Increases the capacity if necessary to ensure that it can hold
* at least the number of elements specified by the minimum
* capacity argument.
*
* @param minCapacity the desired minimum capacity
* @throws OutOfMemoryError if {@code minCapacity < 0}. This is
* interpreted as a request for the unsatisfiably large capacity
* {@code (long) Integer.MAX_VALUE + (minCapacity - Integer.MAX_VALUE)}.
*/
private void ensureCapacity(int minCapacity) {
// overflow-conscious code
if (minCapacity - buf.length > 0)
grow(minCapacity);
} /**
* The maximum size of array to allocate.
* Some VMs reserve some header words in an array.
* Attempts to allocate larger arrays may result in
* OutOfMemoryError: Requested array size exceeds VM limit
*/
private static final int MAX_ARRAY_SIZE = Integer.MAX_VALUE - 8; /**
* Increases the capacity to ensure that it can hold at least the
* number of elements specified by the minimum capacity argument.
*
* @param minCapacity the desired minimum capacity
*/
private void grow(int minCapacity) {
// overflow-conscious code
int oldCapacity = buf.length;
int newCapacity = oldCapacity << 1;
if (newCapacity - minCapacity < 0)
newCapacity = minCapacity;
if (newCapacity - MAX_ARRAY_SIZE > 0)
newCapacity = hugeCapacity(minCapacity);
buf = Arrays.copyOf(buf, newCapacity);
} private static int hugeCapacity(int minCapacity) {
if (minCapacity < 0) // overflow
throw new OutOfMemoryError();
return (minCapacity > MAX_ARRAY_SIZE) ?
Integer.MAX_VALUE :
MAX_ARRAY_SIZE;
} /**
* Writes the specified byte to this byte array output stream.
*
* @param b the byte to be written.
*/
public synchronized void write(int b) {
ensureCapacity(count + 1);
buf[count] = (byte) b;
count += 1;
} /**
* Writes <code>len</code> bytes from the specified byte array
* starting at offset <code>off</code> to this byte array output stream.
*
* @param b the data.
* @param off the start offset in the data.
* @param len the number of bytes to write.
*/
public synchronized void write(byte b[], int off, int len) {
if ((off < 0) || (off > b.length) || (len < 0) ||
((off + len) - b.length > 0)) {
throw new IndexOutOfBoundsException();
}
ensureCapacity(count + len);
System.arraycopy(b, off, buf, count, len);
count += len;
} /**
* Writes the complete contents of this byte array output stream to
* the specified output stream argument, as if by calling the output
* stream's write method using <code>out.write(buf, 0, count)</code>.
*
* @param out the output stream to which to write the data.
* @exception IOException if an I/O error occurs.
*/
public synchronized void writeTo(OutputStream out) throws IOException {
out.write(buf, 0, count);
} /**
* Resets the <code>count</code> field of this byte array output
* stream to zero, so that all currently accumulated output in the
* output stream is discarded. The output stream can be used again,
* reusing the already allocated buffer space.
*
* @see java.io.ByteArrayInputStream#count
*/
public synchronized void reset() {
count = 0;
} /**
* Creates a newly allocated byte array. Its size is the current
* size of this output stream and the valid contents of the buffer
* have been copied into it.
*
* @return the current contents of this output stream, as a byte array.
* @see java.io.ByteArrayOutputStream#size()
*/
public synchronized byte toByteArray()[] {
return Arrays.copyOf(buf, count);
} /**
* Returns the current size of the buffer.
*
* @return the value of the <code>count</code> field, which is the number
* of valid bytes in this output stream.
* @see java.io.ByteArrayOutputStream#count
*/
public synchronized int size() {
return count;
} /**
* Converts the buffer's contents into a string decoding bytes using the
* platform's default character set. The length of the new <tt>String</tt>
* is a function of the character set, and hence may not be equal to the
* size of the buffer.
*
* <p> This method always replaces malformed-input and unmappable-character
* sequences with the default replacement string for the platform's
* default character set. The {@linkplain java.nio.charset.CharsetDecoder}
* class should be used when more control over the decoding process is
* required.
*
* @return String decoded from the buffer's contents.
* @since JDK1.1
*/
public synchronized String toString() {
return new String(buf, 0, count);
} /**
* Converts the buffer's contents into a string by decoding the bytes using
* the named {@link java.nio.charset.Charset charset}. The length of the new
* <tt>String</tt> is a function of the charset, and hence may not be equal
* to the length of the byte array.
*
* <p> This method always replaces malformed-input and unmappable-character
* sequences with this charset's default replacement string. The {@link
* java.nio.charset.CharsetDecoder} class should be used when more control
* over the decoding process is required.
*
* @param charsetName the name of a supported
* {@link java.nio.charset.Charset charset}
* @return String decoded from the buffer's contents.
* @exception UnsupportedEncodingException
* If the named charset is not supported
* @since JDK1.1
*/
public synchronized String toString(String charsetName)
throws UnsupportedEncodingException
{
return new String(buf, 0, count, charsetName);
} /**
* Creates a newly allocated string. Its size is the current size of
* the output stream and the valid contents of the buffer have been
* copied into it. Each character <i>c</i> in the resulting string is
* constructed from the corresponding element <i>b</i> in the byte
* array such that:
* <blockquote><pre>
* c == (char)(((hibyte &amp; 0xff) &lt;&lt; 8) | (b &amp; 0xff))
* </pre></blockquote>
*
* @deprecated This method does not properly convert bytes into characters.
* As of JDK&nbsp;1.1, the preferred way to do this is via the
* <code>toString(String enc)</code> method, which takes an encoding-name
* argument, or the <code>toString()</code> method, which uses the
* platform's default character encoding.
*
* @param hibyte the high byte of each resulting Unicode character.
* @return the current contents of the output stream, as a string.
* @see java.io.ByteArrayOutputStream#size()
* @see java.io.ByteArrayOutputStream#toString(String)
* @see java.io.ByteArrayOutputStream#toString()
*/
@Deprecated
public synchronized String toString(int hibyte) {
return new String(buf, hibyte, 0, count);
} /**
* Closing a <tt>ByteArrayOutputStream</tt> has no effect. The methods in
* this class can be called after the stream has been closed without
* generating an <tt>IOException</tt>.
*/
public void close() throws IOException {
} }

ByteArrayOutputStream