Number Sequence
Time Limit: 10000/3000 MS (Java/Others) Memory Limit: 65536/65536 K (Java/Others)
Problem Description
Given a number sequence b1,b2…bn. Please count how many number sequences a1,a2,...,an satisfy the condition that a1*a2*...*an=b1*b2*…*bn (ai>1).
Input
The input consists of multiple test cases. For each test case, the first line contains an integer n(1<=n<=20). The second line contains n integers which indicate b1, b2,...,bn(1<bi<=1000000, b1*b2*…*bn<=1025).
Output
For each test case, please print the answer module 1e9 + 7.
Sample Input
2 3 4
Sample Output
4
Hint
For the sample input, P=3*4=12. Here are the number sequences that satisfy the condition:
2 6
3 4
4 3
6 2
Source
将每一个数分解质因数,得到每个质因数出现的次数(和质数本身没有关系),然后就要用到容斥原理了,
也就是将每个质数出现的次数放到n个容器中去,这里要注意下1的情况也就是某个容器里面没有放数。
这样结果=总的方案数-有一个容器没放数+有2个容器没有放数……
将m个数放入n个容器的方法数有C(n+m-1,n-1) 。
#include <iostream>
#include <stdio.h>
#include <queue>
#include <stdio.h>
#include <string.h>
#include <vector>
#include <queue>
#include <set>
#include <algorithm>
#include <map>
#include <stack>
#include <math.h>
#define Max(a,b) ((a)>(b)?(a):(b))
#define Min(a,b) ((a)<(b)?(a):(b))
using namespace std ;
typedef long long LL ;
const int M_P= ;
const LL Mod= ;
bool isprime[M_P+] ;
int prime[M_P] ,id;
map<int ,int>my_hash ;
map<int ,int>::iterator p ;
void make_prime(){
id= ;
memset(isprime,,sizeof(isprime)) ;
for(int i=;i<=M_P;i++){
if(!isprime[i])
prime[++id]=i ;
for(int j= ;j<=id&&i*prime[j]<=M_P;j++){
isprime[i*prime[j]]= ;
if(i%prime[j]==)
break ;
}
}
}
LL C[][] ;
void get_C(){
C[][]=C[][]= ;
for(int i=;i<=;i++){
C[i][]=C[i][i]= ;
for(int j=;j<i;j++){
C[i][j]=C[i-][j-]+C[i-][j] ;
if(C[i][j]>=Mod)
C[i][j]%=Mod ;
}
}
}
void gao(int N){
for(int i=;i<=id&&prime[i]*prime[i]<=N;i++){
if(N%prime[i]==){
while(N%prime[i]==){
my_hash[prime[i]]++ ;
N/=prime[i] ;
}
}
if(N==)
break ;
}
if(N!=)
my_hash[N]++ ;
}
vector<int>vec ;
int N ;
LL Sum(){
LL ans= ;
for(int k=;k<vec.size();k++){
ans*=C[vec[k]+N-][N-] ;
if(ans>=Mod)
ans%=Mod ;
}
for(int i=;i<=N;i++){
LL sum=C[N][i] ;
for(int k=;k<vec.size();k++){
int m=N-i ;
sum*=C[vec[k]+m-][m-] ;
if(sum>=Mod)
sum%=Mod ;
}
if(i&)
ans-=sum ;
else
ans+=sum ;
ans=(ans%Mod+Mod)%Mod ;
}
return ans ;
}
int main(){
make_prime() ;
get_C() ;
int M ;
while(scanf("%d",&N)!=EOF){
my_hash.clear() ;
vec.clear() ;
for(int i=;i<=N;i++){
scanf("%d",&M) ;
gao(M) ;
}
for(p=my_hash.begin();p!=my_hash.end();p++)
vec.push_back(p->second) ;
cout<<Sum()<<endl;
}
return ;
}