Intervals
Time Limit: 10000/5000 MS (Java/Others) Memory Limit: 65536/32768 K (Java/Others)
Total Submission(s): 4292 Accepted Submission(s):
1624
Problem Description
You are given n closed, integer intervals [ai, bi] and
n integers c1, ..., cn.
n integers c1, ..., cn.
Write a program that:
> reads the
number of intervals, their endpoints and integers c1, ..., cn from the standard
input,
> computes the minimal size of a set Z of integers which has at
least ci common elements with interval [ai, bi], for each i = 1, 2, ...,
n,
> writes the answer to the standard output
Input
The first line of the input contains an integer n (1
<= n <= 50 000) - the number of intervals. The following n lines describe
the intervals. The i+1-th line of the input contains three integers ai, bi and
ci separated by single spaces and such that 0 <= ai <= bi <= 50 000 and
1 <= ci <= bi - ai + 1.
<= n <= 50 000) - the number of intervals. The following n lines describe
the intervals. The i+1-th line of the input contains three integers ai, bi and
ci separated by single spaces and such that 0 <= ai <= bi <= 50 000 and
1 <= ci <= bi - ai + 1.
Process to the end of file.
Output
The output contains exactly one integer equal to the
minimal size of set Z sharing at least ci elements with interval [ai, bi], for
each i = 1, 2, ..., n.
minimal size of set Z sharing at least ci elements with interval [ai, bi], for
each i = 1, 2, ..., n.
Sample Input
5
3 7 3
8 10 3
6 8 1
1 3 1
10 11 1
3 7 3
8 10 3
6 8 1
1 3 1
10 11 1
Sample Output
6
Author
1384
需要求S[r]-S[l-1]>=ans,即S[l-1]-S[r]<=-ans。若以r为起点 ,而-ans就为r到l-1的最短路径,即-dist[Maxl-1]。
#include<cstdio>
#include<cstring>
#include<queue>
#include<algorithm>
#define MAXN 50100
using namespace std; struct Edge{
int to,nxt,w;
}e[MAXN<<];
int dis[MAXN],head[MAXN];
bool vis[MAXN];
int cnt,n,l,r;
queue<int>q; void init()
{
memset(head,,sizeof(head));
cnt = ;
l = ;
r = ;
}
void add(int u,int v,int w)
{
++cnt;
e[cnt].w = w;
e[cnt].to = v;
e[cnt].nxt = head[u];
head[u] = cnt;
}
void spfa()
{
memset(dis,0x3f,sizeof(dis));
memset(vis,false,sizeof(vis));
q.push(r);
vis[r] = true;
dis[r] = ;
while (!q.empty())
{
int u = q.front();
q.pop();
for (int i=head[u]; i; i=e[i].nxt)
{
int v = e[i].to;
int w = e[i].w;
if (dis[v]>dis[u]+w)
{
dis[v] = dis[u]+w;
if (!vis[v])
{
vis[v] = true;
q.push(v);
}
}
}
vis[u] = false ;
}
printf("%d\n",-dis[l-]);
}
int main()
{
while (scanf("%d",&n)!=EOF)
{
init()
for (int a,b,c,i=; i<=n; ++i)
{
scanf("%d%d%d",&a,&b,&c);
l = min(l,a);
r = max(r,b);
add(b,a-,-c); //b-(a-1)>=c
}
for (int i=l; i<=r; ++i)
{
add(i,i-,); //i-(i-1)>=0
add(i-,i,); //i-(i-1)<=1
}
spfa();
}
return ;
}