【深入了解cocos2d-x 3.x】定时器(scheduler)的使用和原理探究(2)

时间:2022-10-30 14:36:12

上篇说到定时器的使用方法,这篇主要分析它的实现原理。

1.哈希链表

cocos2dx封装了一个结构体,叫做UT_hash_handle,只要在自定义的结构体中声明这个结构体变量,就实现了哈希链表,并且能使用一系列的哈希链表专用的宏。这个结构体的具体实现如下:
typedef struct UT_hash_handle {
struct UT_hash_table *tbl;
void *prev; /* prev element in app order */
void *next; /* next element in app order */
struct UT_hash_handle *hh_prev; /* previous hh in bucket order */
struct UT_hash_handle *hh_next; /* next hh in bucket order */
void *key; /* ptr to enclosing struct's key */
unsigned keylen; /* enclosing struct's key len */
unsigned hashv; /* result of hash-fcn(key) */
} UT_hash_handle;

这个结构体主要实现的是一个双向链表,具体实现哈希验证的还要看UT_hash_table 结构体
typedef struct UT_hash_table {
UT_hash_bucket *buckets;
unsigned num_buckets, log2_num_buckets;
unsigned num_items;
struct UT_hash_handle *tail; /* tail hh in app order, for fast append */
ptrdiff_t hho; /* hash handle offset (byte pos of hash handle in element */

/* in an ideal situation (all buckets used equally), no bucket would have
* more than ceil(#items/#buckets) items. that's the ideal chain length. */
unsigned ideal_chain_maxlen;

/* nonideal_items is the number of items in the hash whose chain position
* exceeds the ideal chain maxlen. these items pay the penalty for an uneven
* hash distribution; reaching them in a chain traversal takes >ideal steps */
unsigned nonideal_items;

/* ineffective expands occur when a bucket doubling was performed, but
* afterward, more than half the items in the hash had nonideal chain
* positions. If this happens on two consecutive expansions we inhibit any
* further expansion, as it's not helping; this happens when the hash
* function isn't a good fit for the key domain. When expansion is inhibited
* the hash will still work, albeit no longer in constant time. */
unsigned ineff_expands, noexpand;

uint32_t signature; /* used only to find hash tables in external analysis */
#ifdef HASH_BLOOM
uint32_t bloom_sig; /* used only to test bloom exists in external analysis */
uint8_t *bloom_bv;
char bloom_nbits;
#endif

} UT_hash_table;

然后看看与哈希链表相关的宏定义,使用这些宏能很方便的插入链表,删除链表,查找链表。
/**
* 查找元素
* head:哈希链表的头指针
* findptr:要查找的元素指针
* out:查找结果
*/
HASH_FIND_PTR(head,findptr,out)
/**
* 添加元素
* head:哈希链表的头指针
* ptrfield:要添加的元素指针
* add:要添加的哈希链表元素
*/
HASH_ADD_PTR(head,ptrfield,add)
/**
* 替换元素
* head:哈希链表的头指针
* ptrfield:要替换的元素指针
* add:要替换的哈希链表元素
*/
HASH_REPLACE_PTR(head,ptrfield,add)
/**
* 删除
* head:哈希链表的头指针
* delptr:要删除的元素指针
*/
HASH_DEL(head,delptr)

以上是引擎中实现的哈希链表的相关知识,接下来再看看与定时器相关的哈希链表。定时器的实现中,将一个定时器存储在哈希链表中,那么在scheduler是如何实现以后哈希链表的结构体的呢?如下:
// 不同优先级的update定时器的双向链表
typedef struct _listEntry
{
struct _listEntry *prev, *next;
ccSchedulerFunc callback;
void *target;
int priority;
bool paused;
bool markedForDeletion; // selector will no longer be called and entry will be removed at end of the next tick
} tListEntry;
//内置的update定时器
typedef struct _hashUpdateEntry
{
tListEntry **list; // Which list does it belong to ?
tListEntry *entry; // entry in the list
void *target;
ccSchedulerFunc callback;
UT_hash_handle hh;
} tHashUpdateEntry;

// 自定义定时器
typedef struct _hashSelectorEntry
{
ccArray *timers;
void *target;
int timerIndex;
Timer *currentTimer;
bool currentTimerSalvaged;
bool paused;
UT_hash_handle hh;
} tHashTimerEntry;

以上就是相关的哈希链表的知识,接下来从定义定时器的函数Node::schedule中一步一步的分析定时器是如何加入到哈希链表中的。

2.如何定义自定义定时器

首先,上一篇文章中说到了很多个自定义定时器的函数,但是最终会调用的函数只有两个,分别是
    /**
* 定义一个自定义的定时器
* selector:回调函数
* interval:重复间隔时间,重复执行间隔的时间,如果传入0,则表示每帧调用
* repeat:重复运行次数,如果传入CC_REPEAT_FOREVER则表示无限循环
* delay:延时秒数,延迟delay秒开始执行第一次回调
*/
void schedule(SEL_SCHEDULE selector, float interval, unsigned int repeat, float delay);

/**
* 使用lambda函数定义一个自定义定时器
* callback:lambda函数
* interval:重复间隔时间,重复执行间隔的时间,如果传入0,则表示每帧调用
* repeat:重复运行次数,如果传入CC_REPEAT_FOREVER则表示无限循环
* delay:延时秒数,延迟delay秒开始执行第一次回调
* key:lambda函数的Key,用于取消定时器
* @lua NA
*/
void schedule(const std::function<void(float)>& callback, float interval, unsigned int repeat, float delay, const std::string &key);

本文从传统的定义定时器的方法入手,也就是第一个方法。接下来看看这个方法的实现:
void Node::schedule(SEL_SCHEDULE selector, float interval, unsigned int repeat, float delay)
{
CCASSERT( selector, "Argument must be non-nil");
CCASSERT( interval >=0, "Argument must be positive");

_scheduler->schedule(selector, this, interval , repeat, delay, !_running);
}

看到其实还是调用_scheduler的schedule方法,那么_scheduler又是个什么鬼?
Scheduler *_scheduler;          ///< scheduler used to schedule timers and updates
查看定义可以知道是一个Scheduler 的指针,但是这个指针从哪里来?在构造函数中有真相
Node::Node(void)
{
// set default scheduler and actionManager
_director = Director::getInstance();
_scheduler = _director->getScheduler();
_scheduler->retain();
}

是从导演类中引用的。这一块暂时我们不管,接下来深入到_scheduler->schedule函数中分析,如下是函数的具体实现
void Scheduler::schedule(SEL_SCHEDULE selector, Ref *target, float interval, unsigned int repeat, float delay, bool paused)
{
CCASSERT(target, "Argument target must be non-nullptr");

//定义并且查找链表元素
tHashTimerEntry *element = nullptr;
HASH_FIND_PTR(_hashForTimers, &target, element);

//没找到
if (! element)
{
//创建一个链表元素
element = (tHashTimerEntry *)calloc(sizeof(*element), 1);
element->target = target;

//添加到哈希链表中
HASH_ADD_PTR(_hashForTimers, target, element);

// Is this the 1st element ? Then set the pause level to all the selectors of this target
element->paused = paused;
}
else
{
CCASSERT(element->paused == paused, "");
}

//检查这个元素的定时器数组,如果数组为空 则new 10个数组出来备用
if (element->timers == nullptr)
{
element->timers = ccArrayNew(10);
}
else
{
//循环查找定时器数组,看看是不是曾经定义过相同的定时器,如果定义过,则只需要修改定时器的间隔时间
for (int i = 0; i < element->timers->num; ++i)
{
TimerTargetSelector *timer = dynamic_cast<TimerTargetSelector*>(element->timers->arr[i]);

if (timer && selector == timer->getSelector())
{
CCLOG("CCScheduler#scheduleSelector. Selector already scheduled. Updating interval from: %.4f to %.4f", timer->getInterval(), interval);
timer->setInterval(interval);
return;
}
}
//扩展1个定时器数组
ccArrayEnsureExtraCapacity(element->timers, 1);
}

//创建一个定时器,并且将定时器加入到当前链表指针的定时器数组中
TimerTargetSelector *timer = new (std::nothrow) TimerTargetSelector();
timer->initWithSelector(this, selector, target, interval, repeat, delay);
ccArrayAppendObject(element->timers, timer);
timer->release();
}


这一段代码具体分析了如何将自定义定时器加入到链表中,并且在链表中的存储结构是怎么样的,接下来看看内置的Update定时器。

3.如何定义Update定时器

Update定时器的开启方法有两个,分别是:
    /**
* 开启自带的update方法,这个方法会每帧执行一次,默认优先级为0,并且在所有自定义方法执行之前执行
*/
void scheduleUpdate(void);

/**
* 开启自带的update方法,这个方法会每帧执行一次,设定的优先级越小,越优先执行
*/
void scheduleUpdateWithPriority(int priority);
第一个方法实际上是直接调用第二个方法,并且把优先级设置为0,我们直接看第二个方法就可以了。

void Node::scheduleUpdateWithPriority(int priority)
{
_scheduler->scheduleUpdate(this, priority, !_running);
}
具体调用还是要进入到_scheduler->scheduleUpdate。
/** Schedules the 'update' selector for a given target with a given priority.
The 'update' selector will be called every frame.
The lower the priority, the earlier it is called.
@since v3.0
@lua NA
*/
template <class T>
void scheduleUpdate(T *target, int priority, bool paused)
{
this->schedulePerFrame([target](float dt){
target->update(dt);
}, target, priority, paused);
}

可以看到这里主要还是调用了一个schedulePerFrame函数,并且传入了一个lambda函数。这个函数实际上调用的是target->update,接下来走进schedulePerFrame看看它的实现:
void Scheduler::schedulePerFrame(const ccSchedulerFunc& callback, void *target, int priority, bool paused)
{
//定义并且查找链表元素
tHashUpdateEntry *hashElement = nullptr;
HASH_FIND_PTR(_hashForUpdates, &target, hashElement);

//如果找到,就直接改优先级
if (hashElement)
{
// 检查优先级是否改变
if ((*hashElement->list)->priority != priority)
{
//检查是否被锁定
if (_updateHashLocked)
{
CCLOG("warning: you CANNOT change update priority in scheduled function");
hashElement->entry->markedForDeletion = false;
hashElement->entry->paused = paused;
return;
}
else
{
// 在这里先停止到update,后面会加回来
unscheduleUpdate(target);
}
}
else
{
hashElement->entry->markedForDeletion = false;
hashElement->entry->paused = paused;
return;
}
}

// 优先级为0,加入到_updates0List链表中,并且加入到_hashForUpdates表中
if (priority == 0)
{
appendIn(&_updates0List, callback, target, paused);
}
// 优先级小于0,加入到_updatesNegList链表中,并且加入到_hashForUpdates表中
else if (priority < 0)
{
priorityIn(&_updatesNegList, callback, target, priority, paused);
}
// 优先级大于0,加入到_updatesPosList链表中,并且加入到_hashForUpdates表中
else
{
// priority > 0
priorityIn(&_updatesPosList, callback, target, priority, paused);
}
}
在这里看上去逻辑还是很清晰的,有两个函数要重点分析一下,分别是
void Scheduler::appendIn(_listEntry **list, const ccSchedulerFunc& callback, void *target, bool paused)
void Scheduler::priorityIn(tListEntry **list, const ccSchedulerFunc& callback, void *target, int priority, bool paused)

第一个用于添加默认优先级,第二个函数用于添加指定优先级的。首先看添加默认优先级的。
void Scheduler::appendIn(_listEntry **list, const ccSchedulerFunc& callback, void *target, bool paused)
{
//创建一个链表元素
tListEntry *listElement = new tListEntry();

listElement->callback = callback;
listElement->target = target;
listElement->paused = paused;
listElement->priority = 0;
listElement->markedForDeletion = false;

//添加到双向链表中
DL_APPEND(*list, listElement);

//创建一个哈希链表元素
tHashUpdateEntry *hashElement = (tHashUpdateEntry *)calloc(sizeof(*hashElement), 1);
hashElement->target = target;
hashElement->list = list;
hashElement->entry = listElement;
//添加到哈希链表中
HASH_ADD_PTR(_hashForUpdates, target, hashElement);
}

接下来看另一个函数
void Scheduler::priorityIn(tListEntry **list, const ccSchedulerFunc& callback, void *target, int priority, bool paused)
{
//同上一个函数
tListEntry *listElement = new tListEntry();

listElement->callback = callback;
listElement->target = target;
listElement->priority = priority;
listElement->paused = paused;
listElement->next = listElement->prev = nullptr;
listElement->markedForDeletion = false;

//如果链表为空
if (! *list)
{
DL_APPEND(*list, listElement);
}
else
{
bool added = false;
//保证链表有序
for (tListEntry *element = *list; element; element = element->next)
{
// 如果优先级小于当前元素的优先级,就在这个元素前面插入
if (priority < element->priority)
{
if (element == *list)
{
DL_PREPEND(*list, listElement);
}
else
{
listElement->next = element;
listElement->prev = element->prev;

element->prev->next = listElement;
element->prev = listElement;
}

added = true;
break;
}
}

//如果新加入的优先级最低,则加入到链表的最后
if (! added)
{
DL_APPEND(*list, listElement);
}
}

//同上一个函数
tHashUpdateEntry *hashElement = (tHashUpdateEntry *)calloc(sizeof(*hashElement), 1);
hashElement->target = target;
hashElement->list = list;
hashElement->entry = listElement;
HASH_ADD_PTR(_hashForUpdates, target, hashElement);
}

本文简单的分析了哈希链表以及定时器的存储和添加,下一篇文章将分析定时器是如何运转起来的。