斐波那契数列 矩阵乘法优化DP

时间:2022-06-14 13:29:46

斐波那契数列 矩阵乘法优化DP

求\(f(n) \%1000000007​\),\(n\le 10^{18}​\)

矩阵乘法:\(i\times k\)的矩阵\(A\)乘\(k\times j\)的矩阵\(B\)得到\(k\times k\)的矩阵,其中第\(i\)列第\(j\)行的数就是\(A\)的第\(i\)行所有数与\(B\)的第\(j​\)列分别相乘再相加

考虑使用矩阵乘法优化DP,为了最后得到\(f(n)​\),我们设矩阵\(\text{base}​\),使\(\begin{bmatrix} F_{n-1} & F_{n-2} \end{bmatrix} \times base = \begin{bmatrix} F_{n} & F_{n-1} \end{bmatrix}​\),容易推得得\(base=\begin{bmatrix} 1 & 1 \\ 1 & 0 \end{bmatrix}​\)

然后因为矩阵乘法可以使用快速幂优化,所以我们直接算出\(base^{n-2}\),答案即为$\begin{bmatrix} 1 & 1 \end{bmatrix} \times base^{n-2} $矩阵的第一行第一列

#include <cstdio>
#include <cstring>
#define MOD 1000000007
using namespace std;
long long n;
struct Mat{
long long a[3][3];
Mat(){memset(a, 0, sizeof a);}
Mat operator * (const Mat &b) const{
Mat res;
for(int i=1;i<=2;++i)
for(int j=1;j<=2;++j)
for(int k=1;k<=2;++k)
res.a[i][j]=(res.a[i][j] + (a[i][k] * b.a[k][j])%MOD)%MOD;
return res;
}
} ans, base;
void qpow(long long x){
while(x!=0){
if(x&1) ans=ans*base;
x>>=1;
base=base*base;
}
}
int main(){
scanf("%lld", &n);
if(n<=2){
puts("1");
return 0;
}
ans.a[1][1]=ans.a[1][2]=1;
base.a[1][1]=1,base.a[1][2]=1,base.a[2][1]=1,base.a[2][2]=0;
qpow(n-2);
printf("%lld", ans.a[1][1]);
return 0;
}