CString详解以及CString转换成char*

时间:2023-01-27 13:02:50
CString 型和 char* 类型的相互转化 1. CString 转化成 char* 之一:强制类型转换为 LPCTSTR;

  这是一种略微硬性的转换,有关“正确”的做法,人们在认识上还存在许多混乱,正确的使用方法有很多,但错误的使用方法可能与正确的使用方法一样多。
  我们首先要了解 CString 是一种很特殊的 C++ 对象,它里面包含了三个值:一个指向某个数据缓冲区的指针、一个是该缓冲中有效的字符记数以及一个缓冲区长度。 有效字符数的大小可以是从0到该缓冲最大长度值减1之间的任何数(因为字符串结尾有一个NULL字符)。字符记数和缓冲区长度被巧妙隐藏。
  除非你做一些特殊的操作,否则你不可能知道给CString对象分配的缓冲区的长度。这样,即使你获得了该0缓冲的地址,你也无法更改其中的内容,不能截短字符串,也 绝对没有办法加长它的内容,否则第一时间就会看到溢出。
  LPCTSTR 操作符(或者更明确地说就是 TCHAR * 操作符)在 CString 类中被重载了,该操作符的定义是返回缓冲区的地址,因此,如果你需要一个指向 CString 的 字符串指针的话,可以这样做:


CString s("GrayCat");
LPCTSTR p = s;
  它可以正确地运行。这是由C语言的强制类型转化规则实现的。当需要强制类型转化时,C++规测容许这种选择。比如,你可以将(浮点数)定义为将某个复数 (有一对浮点数)进行强制类型转换后只返回该复数的第一个浮点数(也就是其实部)。可以象下面这样:

Complex c(1.2f, 4.8f);
float realpart = c;
如果(float)操作符定义正确的话,那么实部的的值应该是1.2。
  这种强制转化适合所有这种情况,例如,任何带有 LPCTSTR 类型参数的函数都会强制执行这种转换。 于是,你可能有这样一个函数(也许在某个你买来的DLL中):

BOOL DoSomethingCool(LPCTSTR s);
你象下面这样调用它:

CString file("c:\\myfiles\\coolstuff")
BOOL result = DoSomethingCool(file);
  它能正确运行。因为 DoSomethingCool 函数已经说明了需要一个 LPCTSTR 类型的参数,因此 LPCTSTR 被应用于该参数,在 MFC 中就是返回的串地址。

如果你要格式化字符串怎么办呢?

CString graycat("GrayCat");
CString s;
s.Format("Mew! I love %s", graycat);
  注意由于在可变参数列表中的值(在函数说明中是以“...”表示的)并没有隐含一个强制类型转换操作符。你会得到什么结果呢?
  一个令人惊讶的结果,我们得到的实际结果串是:

"Mew! I love GrayCat"。
  因为 MFC 的设计者们在设计 CString 数据类型时非常小心, CString 类型表达式求值后指向了字符串,所以这里看不到任何象 Format 或 sprintf 中的强制类型转换,你仍然可以得到正确的行为。描述 CString 的附加数据实际上在 CString 名义地址之后。
  有一件事情你是不能做的,那就是修改字符串。比如,你可能会尝试用“,”代替“.”(不要做这样的,如果你在乎国际化问题,你应该使用十进制转换的 National Language Support 特性,),下面是个简单的例子:

CString v("1.00"); // 货币金额,两位小数
LPCTSTR p = v;
p[lstrlen(p) - 3] = '','';
  这时编译器会报错,因为你赋值了一个常量串。如果你做如下尝试,编译器也会错:

strcat(p, "each");
  因为 strcat 的第一个参数应该是 LPTSTR 类型的数据,而你却给了一个 LPCTSTR。

  不要试图钻这个错误消息的牛角尖,这只会使你自己陷入麻烦!

  原因是缓冲有一个计数,它是不可存取的(它位于 CString 地址之下的一个隐藏区域),如果你改变这个串,缓冲中的字符计数不会反映所做的修改。此外,如果字符串长度恰好是该字符串物理限制的长度(梢后还会讲到这个问题),那么扩展该字符串将改写缓冲以外的任何数据,那是你无权进行写操作的内存(不对吗?),你会毁换坏不属于你的内存。这是应用程序真正的死亡处方。

2. CString转化成char* 之二:使用 CString 对象的 GetBuffer 方法;

  如果你需要修改 CString 中的内容,它有一个特殊的方法可以使用,那就是 GetBuffer,它的作用是返回一个可写的缓冲指针。 如果你只是打算修改字符或者截短字符串,你完全可以这样做:

CString s(_T("File.ext"));
LPTSTR p = s.GetBuffer();
LPTSTR dot = strchr(p, ''.''); // OK, should have used s.Find...
if(p != NULL)
*p = _T(''\0'');
s.ReleaseBuffer();
  这是 GetBuffer 的第一种用法,也是最简单的一种,不用给它传递参数,它使用默认值 0,意思是:“给我这个字符串的指针,我保证不加长它”。当你调用 ReleaseBuffer 时,字符串的实际长度会被重新计算,然后存入 CString 对象中。
  必须强调一点
,在 GetBuffer 和 ReleaseBuffer 之间这个范围,一定不能使用你要操作的这个缓冲的 CString 对象的任何方法。因为 ReleaseBuffer 被调用之前,该 CString 对象的完整性得不到保障。研究以下代码:

CString s(...);

LPTSTR p = s.GetBuffer();

//... 这个指针 p 发生了很多事情

int n = s.GetLength(); // 很糟D!!!!! 有可能给出错误的答案!!!

s.TrimRight(); // 很糟!!!!! 不能保证能正常工作!!!!

s.ReleaseBuffer(); // 现在应该 OK

int m = s.GetLength(); // 这个结果可以保证是正确的。

s.TrimRight(); // 将正常工作。


  假设你想增加字符串的长度,你首先要知道这个字符串可能会有多长,好比是声明字符串数组的时候用:

char buffer[1024];
表示 1024 个字符空间足以让你做任何想做得事情。在 CString 中与之意义相等的表示法:

LPTSTR p = s.GetBuffer(1024);
  调用这个函数后,你不仅获得了字符串缓冲区的指针,而且同时还获得了长度至少为 1024 个字符的空间(注意,我说的是“字符”,而不是“字节”,因为 CString 是以隐含方式感知 Unicode 的)。
  同时,还应该注意的是,如果你有一个常量串指针,这个串本身的值被存储在只读内存中,如果试图存储它,即使你已经调用了 GetBuffer ,并获得一个只读内存的指针,存入操作会失败,并报告存取错误。我没有在 CString 上证明这一点,但我看到过大把的 C 程序员经常犯这个错误。
  C 程序员有一个通病是分配一个固定长度的缓冲,对它进行 sprintf 操作,然后将它赋值给一个 CString:

char buffer[256];
sprintf(buffer, "%......", args, ...); // ... 部分省略许多细节
CString s = buffer;
虽然更好的形式可以这么做:

CString s;
s.Format(_T("%...."), args, ...);
如果你的字符串长度万一超过 256 个字符的时候,不会破坏堆栈。

  另外一个常见的错误是:既然固定大小的内存不工作,那么就采用动态分配字节,这种做法弊端更大:

int len = lstrlen(parm1) + 13   lstrlen(parm2) + 10 + 100;

char * buffer = new char[len];

sprintf(buffer, "%s is equal to %s, valid data", parm1, parm2);

CString s = buffer;

......

delete [] buffer;
它可以能被简单地写成:

CString s;

s.Format(_T("%s is equal to %s, valid data"), parm1, parm2);
  需要注意 sprintf 例子都不是 Unicode 就绪的,尽管你可以使用 tsprintf 以及用 _T() 来包围格式化字符串,但是基本 思路仍然是在走弯路,这这样很容易出错。

3、CString 和临时对象

  这是出现在 microsoft.public.vc.mfc 新闻组中的一个小问题,我简单的提一下,这个问题是有个程序员需要往注册表中写入一个字符串,他写道:
  我试着用 RegSetValueEx() 设置一个注册表键的值,但是它的结果总是令我困惑。当我用char[]声明一个变量时它能正常工作,但是当我用 CString 的时候,总是得到一些垃圾:"ÝÝÝÝ...ÝÝÝÝÝÝ"为了确认是不是我的 CString 数据出了问题,我试着用 GetBuffer,然后强制转化成 char*,LPCSTR。GetBuffer 返回的值是正确的,但是当我把它赋值给 char* 时,它就变成垃圾了。以下是我的程序段:

char* szName = GetName().GetBuffer(20);
RegSetValueEx(hKey, "Name", 0, REG_SZ, 
              (CONST BYTE *) szName,
              strlen (szName + 1));

这个 Name 字符串的长度小于 20,所以我不认为是 GetBuffer 的参数的问题。

真让人困惑,请帮帮我。

亲爱的 Frustrated,

你犯了一个相当微妙的错误,聪明反被聪明误,正确的代码应该象下面这样:


CString Name = GetName();
RegSetValueEx(hKey, _T("Name"), 0, REG_SZ, 
                     (CONST BYTE *) (LPCTSTR)Name,
                     (Name.GetLength() + 1) * sizeof(TCHAR));

  为什么我写的代码能行而你写的就有问题呢?主要是因为当你调用 GetName 时返回的 CString 对象是一个临时对象。参见:《C++ Reference manual》§12.2
  在一些环境中,编译器有必要创建一个临时对象,这样引入临时对象是依赖于实现的。如果编译器引入的这个临时对象所属的类有构造函数的话,编译器要确保这个类的构造函数被调用。同样的,如果这个类声明有析构函数的话,也要保证这个临时对象的析构函数被调用。
  编译器必须保证这个临时对象被销毁了。被销毁的确切地点依赖于实现.....这个析构函数必须在退出创建该临时对象的范围之前被调用。
  大部分的编译器是这样设计的:在临时对象被创建的代码的下一个执行步骤处隐含调用这个临时对象的析构函数,实现起来,一般都是在下一个分号处。因此,这个 CString 对象在 GetBuffer 调用之后就被析构了(顺便提一句,你没有理由给 GetBuffer 函数传递一个参数,而且没有使用ReleaseBuffer 也是不对的)。所以 GetBuffer 本来返回的是指向这个临时对象中字符串的地址的指针,但是当这个临时对象被析构后,这块内存就被释放了。然后 MFC 的调试内存分配器会重新为这块内存全部填上 0xDD,显示出来刚好就是“Ý”符号。在这个时候你向注册表中写数据,字符串的内容当然全被破坏了。
  我们不应该立即把这个临时对象转化成 char* 类型,应该先把它保存到一个 CString 对象中,这意味着把临时对象复制了一份,所以当临时的 CString 对象被析构了之后,这个 CString 对象中的值依然保存着。这个时候再向注册表中写数据就没有问题了。
  此外,我的代码是具有 Unicode 意识的。那个操作注册表的函数需要一个字节大小,使用lstrlen(Name+1) 得到的实际结果对于 Unicode 字符来说比 ANSI 字符要小一半,而且它也不能从这个字符串的第二个字符起开始计算,也许你的本意是 lstrlen(Name) + 1(OK,我承认,我也犯了同样的错误!)。不论如何,在 Unicode 模式下,所有的字符都是2个字节大小,我们需要处理这个问题。微软的文档令人惊讶地对此保持缄默:REG_SZ 的值究竟是以字节计算还是以字符计算呢?我们假设它指的是以字节为单位计算,你需要对你的代码做一些修改来计算这个字符串所含有的字节大小。