HDU1576(扩展欧几里得)

时间:2021-08-20 11:58:00

A/B

Time Limit: 1000/1000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Others)
Total Submission(s): 4252    Accepted Submission(s): 3277

Problem Description
要求(A/B)%9973,但由于A很大,我们只给出n(n=A%9973)(我们给定的A必能被B整除,且gcd(B,9973) = 1)。
 
Input
数据的第一行是一个T,表示有T组数据。
每组数据有两个数n(0 <= n < 9973)和B(1 <= B <= 10^9)。
 
Output
对应每组数据输出(A/B)%9973。
 
Sample Input
2
1000 53
87 123456789
 
Sample Output
7922
6060
 
思路:设(A/B)%9973=x,则A/B=9973*k+x. 因为B整除A,则A=9973*k*B+x*B. 等式两边同模9973得:n=x*B%9973. 将等式写为线性同余方程:x*B+y*9973=n.利用扩展欧几里得求x'*y'*9973=1.在将x'扩大n倍模b即为答案。
#include <iostream>
using namespace std;
typedef long long ll;
ll extgcd(ll a,ll b,ll &x,ll &y)
{
int d=a;
if(b!=)
{
d=extgcd(b,a%b,y,x);
y-=(a/b*x);
}
else
{
x=;y=;
}
return d;
}
int main()
{
int T;
cin>>T;
while(T--)
{
ll a,b,c;
cin>>c>>a;
b=;
ll x=,y=;
extgcd(a,b,x,y);
x%=b;
while(x<)x+=b;
x=(x*c)%b;
cout<<x<<endl;
}
return ;
}