题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=1576
A/B
Time Limit: 1000/1000 MS (Java/Others) Memory Limit: 32768/32768 K (Java/Others)
Total Submission(s): 4020 Accepted Submission(s): 3091
Problem Description
要求(A/B)%9973,但由于A很大,我们只给出n(n=A%9973)(我们给定的A必能被B整除,且gcd(B,9973) = 1)。
Input
数据的第一行是一个T,表示有T组数据。
每组数据有两个数n(0 <= n < 9973)和B(1 <= B <= 10^9)。
每组数据有两个数n(0 <= n < 9973)和B(1 <= B <= 10^9)。
Output
对应每组数据输出(A/B)%9973。
Sample Input
2
1000 53
87 123456789
1000 53
87 123456789
Sample Output
7922
6060
6060
Author
xhd
Source
题解:
直接算数B的逆元然后乘n就是结果了。呵呵呵
逆元:
定义:B 的逆元x满足Bx===1(mod m);
可以写成Bx+ym === 1(mod m);
所以可以用扩展欧几里得算出x和y(注意。这里必须要求B和m 是互质的才有结果)
但是注意到这个题中的M很特殊,是一个质数,所以可以用费马小定理来求逆元
费马小定理说,对于素数 M 任意不是 M 的倍数的 b,都有:
b ^ (M-1) = 1 (mod M)
于是可以拆成:
b * b ^ (M-2) = 1 (mod M)
于是:
a / b = a / b * (b * b ^ (M-2)) = a * (b ^ (M-2)) (mod M)
也就是说我们要求的逆元就是 b ^ (M-2) (mod M)
//求乘法逆元,扩展欧几里得,或者是费马小定理
#include<cstdio>
#include<cstring>
#include<algorithm>
using namespace std;
int pow(int b,int n)
{
int ans = ;
for(int i = ; i < n; i++)
{
ans = (ans*b)%;
}
return ans;
}
int main()
{
int T;
scanf("%d",&T);
while(T--)
{
int n,b;
scanf("%d%d",&n,&b);
b = b%;
int tm = pow(b,);
int sol = (n*tm)%;
printf("%d\n",sol);
}
return ;
}