本文分析基于Linux Kernel 1.2.13
原创作品,转载请标明http://blog.csdn.net/yming0221/article/details/7514017
更多请看专栏,地址http://blog.csdn.net/column/details/linux-kernel-net.html
作者:闫明
注:标题中的”(上)“,”(下)“表示分析过程基于数据包的传递方向:”(上)“表示分析是从底层向上分析、”(下)“表示分析是从上向下分析。
简单分析了链路层之后,上升到网络层来分析,看看链路层是如何为其上层--网络层服务的。其实在驱动程序层和网络层直接还有一层是接口层,叫做驱动程序接口层,用来整合不同的网络设备。接口层的内容会在上下层中提及。这里我们分析网络IP协议的实现原理。
其实现的文件主要是net/inet/ip.c文件中
我们首先分析下ip_init()初始化函数
这个函数是如何被调用的呢?
下面是调用的过程:
首先是在系统启动过程main.c中调用了sock_init()函数
void sock_init(void)//网络栈初始化 { int i; printk("Swansea University Computer Society NET3.019\n"); /* * Initialize all address (protocol) families. */ for (i = 0; i < NPROTO; ++i) pops[i] = NULL; /* * Initialize the protocols module. */ proto_init(); #ifdef CONFIG_NET /* * Initialize the DEV module. */ dev_init(); /* * And the bottom half handler */ bh_base[NET_BH].routine= net_bh;//设置NET 下半部分的处理函数为net_bh enable_bh(NET_BH); #endif }
然后调用了proto_init()函数
void proto_init(void) { extern struct net_proto protocols[]; /* Network protocols 全局变量,定义在protocols.c中*/ struct net_proto *pro; /* Kick all configured protocols. */ pro = protocols; while (pro->name != NULL) //对所有的定义的域进行初始化 { (*pro->init_func)(pro); pro++; } /* We're all done... */ }
而protocols全局变量协议向量表的定义中对INET域中协议的初始化函数设置为inet_proto_init()
/* * Protocol Table */ struct net_proto protocols[] = { #ifdef CONFIG_UNIX { "UNIX", unix_proto_init }, #endif #if defined(CONFIG_IPX)||defined(CONFIG_ATALK) { "802.2", p8022_proto_init }, { "SNAP", snap_proto_init }, #endif #ifdef CONFIG_AX25 { "AX.25", ax25_proto_init }, #endif #ifdef CONFIG_INET { "INET", inet_proto_init }, #endif #ifdef CONFIG_IPX { "IPX", ipx_proto_init }, #endif #ifdef CONFIG_ATALK { "DDP", atalk_proto_init }, #endif { NULL, NULL } };
看到在inet_proto_init()函数中调用了ip_init()对IP层进行了初始化。
void inet_proto_init(struct net_proto *pro)//INET域协议初始化函数 { struct inet_protocol *p; int i; printk("Swansea University Computer Society TCP/IP for NET3.019\n"); /* * Tell SOCKET that we are alive... */ (void) sock_register(inet_proto_ops.family, &inet_proto_ops); ........................................... printk("IP Protocols: "); for(p = inet_protocol_base; p != NULL;) //将inet_protocol_base指向的一个inet_protocol结构体加入数组inet_protos中 { struct inet_protocol *tmp = (struct inet_protocol *) p->next; inet_add_protocol(p); printk("%s%s",p->name,tmp?", ":"\n"); p = tmp; } /* * Set the ARP module up */ arp_init();//对地址解析层进行初始化 /* * Set the IP module up */ ip_init();//对IP层进行初始化 }代码中inet_protocol_base指向的链表为&igmp_protocol-->&icmp_protocol-->&udp_protocol-->&tcp_protocol-->NULL(定义在protocol.c中)
分析ip_init()函数需要先要知道packet_type结构,这个结构体是网络层协议的结构体,网络层协议与该结构体一一对应。
/*该结构用于表示网络层协议,网络层协议与packt_type一一对应*/ struct packet_type { unsigned short type; /* This is really htons(ether_type). ,对应的网络层协议编号*/ struct device * dev; int (*func) (struct sk_buff *, struct device *, struct packet_type *); void *data; struct packet_type *next; };第一个字段的网络层协议编号定义在include/linux/if_ether.h中
/* These are the defined Ethernet Protocol ID's. */ #define ETH_P_LOOP 0x0060 /* Ethernet Loopback packet */ #define ETH_P_ECHO 0x0200 /* Ethernet Echo packet */ #define ETH_P_PUP 0x0400 /* Xerox PUP packet */ #define ETH_P_IP 0x0800 /* Internet Protocol packet */ #define ETH_P_ARP 0x0806 /* Address Resolution packet */ #define ETH_P_RARP 0x8035 /* Reverse Addr Res packet */ #define ETH_P_X25 0x0805 /* CCITT X.25 */ #define ETH_P_ATALK 0x809B /* Appletalk DDP */ #define ETH_P_IPX 0x8137 /* IPX over DIX */ #define ETH_P_802_3 0x0001 /* Dummy type for 802.3 frames */ #define ETH_P_AX25 0x0002 /* Dummy protocol id for AX.25 */ #define ETH_P_ALL 0x0003 /* Every packet (be careful!!!) */ #define ETH_P_802_2 0x0004 /* 802.2 frames */ #define ETH_P_SNAP 0x0005 /* Internal only */
第二个字段表示处理包的网络接口设备,一般初始化为NULL。
第三个字段为相应网络协议的处理函数。
第四个字段是一个void指针。
第五个字段是next指针域,用于将该结构连接成链表。
下面是ip_init()函数
/* * IP registers the packet type and then calls the subprotocol initialisers */ void ip_init(void)//该函数在af_inet.c文件中 { ip_packet_type.type=htons(ETH_P_IP); dev_add_pack(&ip_packet_type);//将网络协议插入IP协议链表,头插法 /* So we flush routes when a device is downed */ register_netdevice_notifier(&ip_rt_notifier);//将其插入通知链表 /* ip_raw_init(); ip_packet_init(); ip_tcp_init(); ip_udp_init();*/ }
这里需要说明的是系统采用主动通知的方式,其实现是有赖于notifier_block结构,其定义在notifier.h中
struct notifier_block { int (*notifier_call)(unsigned long, void *); struct notifier_block *next; int priority; };对于网卡设备而言,网卡设备的启动和关闭是事件,内核需要得到通知从而采取相应的措施。其原理是:当事件发生时,事件通知者便利某个队列,对队列中感兴趣(符合条件)的被通知者调用被通知者注册是定义的通知处理函数,从而达到让内核做出相应的操作。
当硬件缓冲区数据填满后,会执行中断处理程序,以NE 8390网卡为例,由于在ne.c文件中注册中断时的中断处理函数设置如下:
request_irq (dev->irq, ei_interrupt, 0, wordlength==2 ? "ne2000":"ne1000");中断处理函数为ei_interrupt()。执行ei_interrupt()函数时会调用函数ei_recieve(),而ei_recieve()函数会调用netif_rx()函数将以skb_buf的形式发送给上层。
当然netif_rx()函数的特点前面分析过,即Bottom Half技术,使得中断处理过程有效的缩短,提高系统的效率。在下半段该函数会调用dev_transmit()函数,而它会调用函数dev_tint()函数,dev_tinit()会调用函数dev_queue_xmit(),这个函数会调用dev->hard_start_xmit函数,该函数指针在ethdev_init()函数中赋值了:
dev->hard_start_xmit = &ei_start_xmit;//设备的发送函数,定义在8390.c中最后调用ei_start_xmit()函数将数据包从硬件设备中读出放在skb中,即存放到内核空间中。
中断返回后系统会执行下半段,即执行net_bh()函数,该函数会扫描网络协议队列,调用相应的协议的接收函数,IP协议就会调用ip_rcv()
/* * When we are called the queue is ready to grab, the interrupts are * on and hardware can interrupt and queue to the receive queue a we * run with no problems. * This is run as a bottom half after an interrupt handler that does * mark_bh(NET_BH); */ void net_bh(void *tmp) { ................................... while((skb=skb_dequeue(&backlog))!=NULL)//出队直到队列为空 { ............................... /* * Fetch the packet protocol ID. This is also quite ugly, as * it depends on the protocol driver (the interface itself) to * know what the type is, or where to get it from. The Ethernet * interfaces fetch the ID from the two bytes in the Ethernet MAC * header (the h_proto field in struct ethhdr), but other drivers * may either use the ethernet ID's or extra ones that do not * * (eg ETH_P_AX25). We could set this before we queue the * frame. In fact I may change this when I have time. */ type = skb->dev->type_trans(skb, skb->dev);//取出该数据包所属的协议类型 /* * We got a packet ID. Now loop over the "known protocols" * table (which is actually a linked list, but this will * change soon if I get my way- FvK), and forward the packet * to anyone who wants it. * * [FvK didn't get his way but he is right this ought to be * hashed so we typically get a single hit. The speed cost * here is minimal but no doubt adds up at the 4,000+ pkts/second * rate we can hit flat out] */ pt_prev = NULL; for (ptype = ptype_base; ptype != NULL; ptype = ptype->next) //遍历ptype_base所指向的网络协议队列 { //判断协议号是否匹配 if ((ptype->type == type || ptype->type == htons(ETH_P_ALL)) && (!ptype->dev || ptype->dev==skb->dev)) { /* * We already have a match queued. Deliver * to it and then remember the new match */ if(pt_prev) { struct sk_buff *skb2; skb2=skb_clone(skb, GFP_ATOMIC);//复制数据包结构 /* * Kick the protocol handler. This should be fast * and efficient code. */ if(skb2) pt_prev->func(skb2, skb->dev, pt_prev);//调用相应协议的处理函数, //这里和网络协议的种类有关系 //如IP 协议的处理函数就是ip_rcv } /* Remember the current last to do */ pt_prev=ptype; } } /* End of protocol list loop */ ........................................... }IP数据包类型的初始化设置在ip.c中
/* * IP protocol layer initialiser */ static struct packet_type ip_packet_type = { 0, /* MUTTER ntohs(ETH_P_IP),*/ NULL, /* All devices */ ip_rcv, NULL, NULL, };
接下来分析ip_rcv()函数,这是IP层的接收函数,接收来自链路层的数据。
这里首先了解一下IP数据包的首部结构,结构示意图如下:
标志位三位,分别是:保留,DF(可以分片),MF(还有后续分片)。
内核中对应的结构体定义如下(include/linux/ip.h):
/*IP数据包首部结构体*/ struct iphdr { #if defined(LITTLE_ENDIAN_BITFIELD) __u8 ihl:4, version:4; #elif defined (BIG_ENDIAN_BITFIELD) __u8 version:4, ihl:4; #else #error "Please fix <asm/byteorder.h>" #endif __u8 tos;//服务类型 __u16 tot_len;//总长度 __u16 id;//标示 __u16 frag_off;//标志和片偏移 __u8 ttl;//生存时间 __u8 protocol;//协议 __u16 check;//头部校验和 __u32 saddr;//源地址 __u32 daddr;//目的地址 /*The options start here. */ };
内核中用于封装网络数据的最重要的数据结构sk_buff定义在include/linux/skbuff.h中:
struct sk_buff { struct sk_buff * volatile next;//指针域,指向后继 struct sk_buff * volatile prev;//指针域,指向前驱 #if CONFIG_SKB_CHECK int magic_debug_cookie; #endif struct sk_buff * volatile link3;//该指针域用于TCP协议,指向数据包重发队列 struct sock *sk;//该数据指向的套接字 volatile unsigned long when; /* used to compute rtt's 用于计算往返时间*/ struct timeval stamp; struct device *dev;//标示发送或接收该数据包的接口设备 struct sk_buff *mem_addr;//指向该sk_buff结构指向的内存基地址,用于该数据结构的内存释放 union {//该联合结构用于实现通用 struct tcphdr *th; struct ethhdr *eth;//链路层有效 struct iphdr *iph;//网络层有效 struct udphdr *uh; unsigned char *raw; unsigned long seq;//TCP协议有效,表示该数据包的ACK值 } h; struct iphdr *ip_hdr; /* For IPPROTO_RAW ,指向IP首部指针,用于RAW套接字*/ unsigned long mem_len;//表示该结构的大小和数据帧的总大小 unsigned long len;//表示数据帧大小 unsigned long fraglen;//表示分片个数 struct sk_buff *fraglist; /* Fragment list ,分片数据包队列*/ unsigned long truesize;//==mem_len unsigned long saddr;//源地址 unsigned long daddr;//目的地址 unsigned long raddr;//数据包的下一站地址 volatile char acked,//==1表示该数据包已经得到确认 used,//==1表示该数据包已经被数据包用完,可以释放 free,//==1表示该数据包用完后直接释放,不用缓存 arp;//==1表示MAC数据帧首部完成,否则表示MAC首部目的硬件地址尚不知晓,需使用ARP协议询问 unsigned char tries,//表示数据包已得到试发送 lock,//表示是否被其他程序使用 localroute,//表示是局域网路由还是广域网路由 pkt_type;//表示数据包的类型,分为,发往本机、广播、多播、发往其他主机 #define PACKET_HOST 0 /* To us */ #define PACKET_BROADCAST 1 #define PACKET_MULTICAST 2 #define PACKET_OTHERHOST 3 /* Unmatched promiscuous */ unsigned short users; /* User count - see datagram.c (and soon seqpacket.c/stream.c) 使用该数据包的程序数目*/ unsigned short pkt_class; /* For drivers that need to cache the packet type with the skbuff (new PPP) */ #ifdef CONFIG_SLAVE_BALANCING unsigned short in_dev_queue;//表示数据包是否在设备缓冲队列 #endif unsigned long padding[0];//填充 unsigned char data[0];//指向数据部分 };
ip_rcv()函数流程图:
/* * This function receives all incoming IP datagrams. */ int ip_rcv(struct sk_buff *skb, struct device *dev, struct packet_type *pt) { struct iphdr *iph = skb->h.iph; struct sock *raw_sk=NULL; unsigned char hash; unsigned char flag = 0; unsigned char opts_p = 0; /* Set iff the packet has options. */ struct inet_protocol *ipprot;//每个传输层协议对应一个inet_protocol,用于调用传输层的服务函数 static struct options opt; /* since we don't use these yet, and they take up stack space. */ int brd=IS_MYADDR; int is_frag=0; #ifdef CONFIG_IP_FIREWALL int err; #endif ip_statistics.IpInReceives++; /* * Tag the ip header of this packet so we can find it */ skb->ip_hdr = iph;//设置IP首部指针 /* * Is the datagram acceptable? * * 1. Length at least the size of an ip header * 2. Version of 4 * 3. Checksums correctly. [Speed optimisation for later, skip loopback checksums] * (4. We ought to check for IP multicast addresses and undefined types.. does this matter ?) */ //IP数据包合法性检查 if (skb->len<sizeof(struct iphdr) || iph->ihl<5 || iph->version != 4 || skb->len<ntohs(iph->tot_len) || ip_fast_csum((unsigned char *)iph, iph->ihl) !=0) { ip_statistics.IpInHdrErrors++; kfree_skb(skb, FREE_WRITE); return(0); } /* * See if the firewall wants to dispose of the packet. */ #ifdef CONFIG_IP_FIREWALL //检查防火墙是否阻止该数据包,过滤数据包 if ((err=ip_fw_chk(iph,dev,ip_fw_blk_chain,ip_fw_blk_policy, 0))!=1) { if(err==-1) icmp_send(skb, ICMP_DEST_UNREACH, ICMP_PORT_UNREACH, 0, dev); kfree_skb(skb, FREE_WRITE); return 0; } #endif /* * Our transport medium may have padded the buffer out. Now we know it * is IP we can trim to the true length of the frame. */ skb->len=ntohs(iph->tot_len); /* * Next analyse the packet for options. Studies show under one packet in * a thousand have options.... */ if (iph->ihl != 5)//IP数据报首部存在选项字段 { /* Fast path for the typical optionless IP packet. */ memset((char *) &opt, 0, sizeof(opt)); if (do_options(iph, &opt) != 0) return 0; opts_p = 1; } /* * Remember if the frame is fragmented. */ //看该数据包是否含有分片,MF和偏移同时为0,则表示无分片,否则是分片,此处有BUG /* 分片的条件 第一个分片MF=1,offset=0 中间分片MF=1,offset!=0 最后分片MF=1,offset!=0 */ if(iph->frag_off) { if (iph->frag_off & 0x0020) is_frag|=1; /* * Last fragment ? */ if (ntohs(iph->frag_off) & 0x1fff) is_frag|=2; } /* * Do any IP forwarding required. chk_addr() is expensive -- avoid it someday. * * This is inefficient. While finding out if it is for us we could also compute * the routing table entry. This is where the great unified cache theory comes * in as and when someone implements it * * For most hosts over 99% of packets match the first conditional * and don't go via ip_chk_addr. Note: brd is set to IS_MYADDR at * function entry. */ if ( iph->daddr != skb->dev->pa_addr && (brd = ip_chk_addr(iph->daddr)) == 0) { /* * Don't forward multicast or broadcast frames.广播的数据报不转发 */ if(skb->pkt_type!=PACKET_HOST || brd==IS_BROADCAST) { kfree_skb(skb,FREE_WRITE); return 0; } /* * The packet is for another target. Forward the frame */ #ifdef CONFIG_IP_FORWARD ip_forward(skb, dev, is_frag);//转发数据报 #else /* printk("Machine %lx tried to use us as a forwarder to %lx but we have forwarding disabled!\n", iph->saddr,iph->daddr);*/ ip_statistics.IpInAddrErrors++; #endif /* * The forwarder is inefficient and copies the packet. We * free the original now. */ kfree_skb(skb, FREE_WRITE); return(0); } #ifdef CONFIG_IP_MULTICAST //多播 if(brd==IS_MULTICAST && iph->daddr!=IGMP_ALL_HOSTS && !(dev->flags&IFF_LOOPBACK)) { /* * Check it is for one of our groups */ struct ip_mc_list *ip_mc=dev->ip_mc_list; do { if(ip_mc==NULL) { kfree_skb(skb, FREE_WRITE); return 0; } if(ip_mc->multiaddr==iph->daddr) break; ip_mc=ip_mc->next; } while(1); } #endif /* * Account for the packet */ #ifdef CONFIG_IP_ACCT ip_acct_cnt(iph,dev, ip_acct_chain); #endif /* * Reassemble IP fragments. */ if(is_frag)//该数据报是一个分片,进行合并 { /* Defragment. Obtain the complete packet if there is one */ /*该函数的作用是梳理分片的数据报,如果接收当前分片后,所有分片均已到达 *该函数会调用ip_glue()函数进行IP数据报的重组,否则将该IP数据报放到ipq中fragment *字段指向的队列中 * */ skb=ip_defrag(iph,skb,dev); if(skb==NULL) return 0; skb->dev = dev; iph=skb->h.iph; } /* * Point into the IP datagram, just past the header. */ skb->ip_hdr = iph; skb->h.raw += iph->ihl*4;//sk_buff中union类型的h字段永远指向当前正在处理的协议的首部,这里使其指向传输层的首部,用于传输层的处理 /* * Deliver to raw sockets. This is fun as to avoid copies we want to make no surplus copies. */ hash = iph->protocol & (SOCK_ARRAY_SIZE-1); /* If there maybe a raw socket we must check - if not we don't care less */ //处理RAW类型的套接字 if((raw_sk=raw_prot.sock_array[hash])!=NULL) { struct sock *sknext=NULL; struct sk_buff *skb1; raw_sk=get_sock_raw(raw_sk, hash, iph->saddr, iph->daddr); if(raw_sk) /* Any raw sockets */ { do { /* Find the next */ sknext=get_sock_raw(raw_sk->next, hash, iph->saddr, iph->daddr); if(sknext) skb1=skb_clone(skb, GFP_ATOMIC); else break; /* One pending raw socket left */ if(skb1) raw_rcv(raw_sk, skb1, dev, iph->saddr,iph->daddr);//RAW类型套接字的接收函数 raw_sk=sknext; } while(raw_sk!=NULL); /* Here either raw_sk is the last raw socket, or NULL if none */ /* We deliver to the last raw socket AFTER the protocol checks as it avoids a surplus copy */ } } /* * skb->h.raw now points at the protocol beyond the IP header. */ hash = iph->protocol & (MAX_INET_PROTOS -1); //对所有使用IP协议的上层协议套接字处理 for (ipprot = (struct inet_protocol *)inet_protos[hash];ipprot != NULL;ipprot=(struct inet_protocol *)ipprot->next) { struct sk_buff *skb2; if (ipprot->protocol != iph->protocol) continue; /* * See if we need to make a copy of it. This will * only be set if more than one protocol wants it. * and then not for the last one. If there is a pending * raw delivery wait for that */ if (ipprot->copy || raw_sk) { skb2 = skb_clone(skb, GFP_ATOMIC); if(skb2==NULL) continue; } else { skb2 = skb; } flag = 1; /* * Pass on the datagram to each protocol that wants it, * based on the datagram protocol. We should really * check the protocol handler's return values here... */ ipprot->handler(skb2, dev, opts_p ? &opt : 0, iph->daddr, (ntohs(iph->tot_len) - (iph->ihl * 4)), iph->saddr, 0, ipprot); } /* * All protocols checked. * If this packet was a broadcast, we may *not* reply to it, since that * causes (proven, grin) ARP storms and a leakage of memory (i.e. all * ICMP reply messages get queued up for transmission...) */ if(raw_sk!=NULL) /* Shift to last raw user */ raw_rcv(raw_sk, skb, dev, iph->saddr, iph->daddr); else if (!flag) /* Free and report errors */ { if (brd != IS_BROADCAST && brd!=IS_MULTICAST) icmp_send(skb, ICMP_DEST_UNREACH, ICMP_PROT_UNREACH, 0, dev); kfree_skb(skb, FREE_WRITE); } return(0); }
这里会进一步调用raw_rcv()或者相应协议的ipprot->handler来调用传输层服务函数。下篇会进行简单分析。