一、任务调度策略
当我们将topology提交到storm集群的时候,任务是怎样分配的呢,这就需要理解storm的任务调度策略,这里主要给大家分享默认的调度策略DefaultScheduler,在storm的1.1.0版本已经支持4种调度策略,分别是DefaultScheduler,IsolationScheduler,MultitenantScheduler,ResourceAwareScheduler。
二、Topology的提交过程
在理解默认的调度策略之前,先看一下我们提交一个topology到集群的整个流程图。
主要分为几步:
1、非本地模式下,客户端通过thrift调用nimbus接口,来上传代码到nimbus并触发提交操作.
2、nimbus进行任务分配,并将信息同步到zookeeper.
3、supervisor定期获取任务分配信息,如果topology代码缺失,会从nimbus下载代码,并根据任务分配信息,同步worker.
4、worker根据分配的tasks信息,启动多个executor线程,同时实例化spout、bolt、acker等组件,此时,等待所有connections(worker和其它机器通讯的网络连接)启动完毕,storm集群即进入工作状态。
5、除非显示调用kill topology,否则spout、bolt等组件会一直运行。
下面我们来看一下整个topolgoy提交过程的源代码
Main方法里面的提交代码
StormSubmitter.submitTopology("one-work",config,builder.createTopology());
然后调用下面方法
public static void submitTopologyAs(String name, Map stormConf, StormTopology topology, SubmitOptions opts, ProgressListener progressListener, String asUser) throws AlreadyAliveException, InvalidTopologyException, AuthorizationException, IllegalArgumentException { //配置文件必须能够被Json序列化 if(!Utils.isValidConf(stormConf)) { throw new IllegalArgumentException("Storm conf is not valid. Must be json-serializable"); } stormConf = new HashMap(stormConf); //将命令行的参数加入stormConf stormConf.putAll(Utils.readCommandLineOpts()); //先加载defaults.yaml, 然后再加载storm.yaml Map conf = Utils.readStormConfig(); conf.putAll(stormConf); //设置zookeeper的相关权限 stormConf.putAll(prepareZookeeperAuthentication(conf)); validateConfs(conf, topology); Map<String,String> passedCreds = new HashMap<>(); if (opts != null) { Credentials tmpCreds = opts.get_creds(); if (tmpCreds != null) { passedCreds = tmpCreds.get_creds(); } } Map<String,String> fullCreds = populateCredentials(conf, passedCreds); if (!fullCreds.isEmpty()) { if (opts == null) { opts = new SubmitOptions(TopologyInitialStatus.ACTIVE); } opts.set_creds(new Credentials(fullCreds)); } try { //本地模式 if(localNimbus!=null) { LOG.info("Submitting topology " + name + " in local mode"); if(opts!=null) { localNimbus.submitTopologyWithOpts(name, stormConf, topology, opts); } else { // this is for backwards compatibility localNimbus.submitTopology(name, stormConf, topology); } LOG.info("Finished submitting topology: " + name); //这里重点分析将topology提交到集群模式 } else { //将配置信息转为json字符串 String serConf = JSONValue.toJSONString(stormConf); //校验集群中topology-name是否已经存在 if(topologyNameExists(conf, name, asUser)) { throw new RuntimeException("Topology with name `" + name + "` already exists on cluster"); } //将jar包上传至nimbus,这个时候topology还没有正在跑起来,只是将jar提交到了nimbus,等待后续的任务调度 String jar = submitJarAs(conf, System.getProperty("storm.jar"), progressListener, asUser); try ( //获取Nimbus client对象 NimbusClient client = NimbusClient.getConfiguredClientAs(conf, asUser)){ LOG.info("Submitting topology " + name + " in distributed mode with conf " + serConf); //调用submitTopologyWithOpts正式向nimbus提交拓扑,其实所谓的提交拓扑,就是将拓扑的配置信息通过thrift发送到thrift server,并把jar包上传到nimbus,等待nimbus的后续处//理,此时拓扑并未真正起来,直至recv_submitTopology获得成功的返回信息为止 if (opts != null) { client.getClient().submitTopologyWithOpts(name, jar, serConf, topology, opts); } else { // this is for backwards compatibility client.getClient().submitTopology(name, jar, serConf, topology); } LOG.info("Finished submitting topology: " + name); } catch (InvalidTopologyException e) { LOG.warn("Topology submission exception: " + e.get_msg()); throw e; } catch (AlreadyAliveException e) { LOG.warn("Topology already alive exception", e); throw e; } } } catch(TException e) { throw new RuntimeException(e); } invokeSubmitterHook(name, asUser, conf, topology); }
继续调用
public static String submitJarAs(Map conf, String localJar, ProgressListener listener, String asUser) { if (localJar == null) { throw new RuntimeException("Must submit topologies using the 'storm' client script so that StormSubmitter knows which jar to upload."); } //如果获取了nimbus client try (NimbusClient client = NimbusClient.getConfiguredClientAs(conf, asUser)) { //获取topology-jar对应的存放地址 String uploadLocation = client.getClient().beginFileUpload(); LOG.info("Uploading topology jar " + localJar + " to assigned location: " + uploadLocation); BufferFileInputStream is = new BufferFileInputStream(localJar, THRIFT_CHUNK_SIZE_BYTES); long totalSize = new File(localJar).length(); if (listener != null) { listener.onStart(localJar, uploadLocation, totalSize); } long bytesUploaded = 0; while(true) { byte[] toSubmit = is.read(); bytesUploaded += toSubmit.length; if (listener != null) { listener.onProgress(localJar, uploadLocation, bytesUploaded, totalSize); } if(toSubmit.length==0) break; //一块一块的提交jar client.getClient().uploadChunk(uploadLocation, ByteBuffer.wrap(toSubmit)); } //完成jar包提交 client.getClient().finishFileUpload(uploadLocation); if (listener != null) { listener.onCompleted(localJar, uploadLocation, totalSize); } LOG.info("Successfully uploaded topology jar to assigned location: " + uploadLocation); //返回存放jar的位置 return uploadLocation; } catch(Exception e) { throw new RuntimeException(e); } }继续调用
public void submitTopology(String name, String uploadedJarLocation, String jsonConf, StormTopology topology) throws AlreadyAliveException, InvalidTopologyException, AuthorizationException, org.apache.thrift.TException { //发送topology相关信息到nimbus send_submitTopology(name, uploadedJarLocation, jsonConf, topology); //接收返回结果 recv_submitTopology(); }继续调用:
public void send_submitTopology(String name, String uploadedJarLocation, String jsonConf, StormTopology topology) throws org.apache.thrift.TException{ submitTopology_args args = new submitTopology_args(); args.set_name(name); args.set_uploadedJarLocation(uploadedJarLocation); args.set_jsonConf(jsonConf); args.set_topology(topology); sendBase("submitTopology", args); }继续调用:
public void recv_submitTopology() throws AlreadyAliveException, InvalidTopologyException, AuthorizationException, org.apache.thrift.TException { submitTopology_result result = new submitTopology_result(); receiveBase(result, "submitTopology"); if (result.e != null) { throw result.e; } if (result.ite != null) { throw result.ite; } if (result.aze != null) { throw result.aze; } return;}
三、任务分配
在上面我们已经将topology提交到到nimbus了,下一步就是任务分配,strom默认4种分配策略。
DefaultScheduler策略,DefaultScheduler其实主要有几步
1、首先是获取当前集群中需要进行任务分配的topology
2、获取整个集群可用的slot
3、获取当前topology需要分配的executor信息
4、计算当前集群可释放的slot
5、统计可释放的solt和空闲的solt
6、执行topology分配
下面我们用一个列子来说明
比如初始状态下,集群的状态如下:2个supervisor,每个supervisor有4个可用的端口,这里我已A,B分别代表2个supervisor,那么初始情况下整个集群可用的端口地址就是:
A-6700,A-6701,A-6703,A-6704,B-6700,B-6701,B6702,B-6703。
Step1:现在我提交一个topology到集群,这个拓扑我给他分配2个worker端口,6个executor线程,每个线程默认运行一个任务就是6个task。当我们提交这个拓扑的时候,首先集群会将可用的solts进行排序如上可用端口的顺序,然后计算线程和任务的对应关系,这里都是6个,格式为[start-task-id end-task-id]就[1,1][2,2][3,3],[4,4],[5,5],[6,6]然后分配到2个worker上,那么每个worker分别跑3个线程即分配状态为[3,3]。
综上:分配的结果为:
[1,1],[2,2],[3,3] --->worker1
[4,4],[5,5],[6,6] --->worker2
而非常重要的是storm为了合理利用资源,在将可用slots排序后,依次选择worker来运行任务,也就是worker1对应A--6700,worker2对应B--6700。
下面我们来看一下storm集群的日志文件
首先提交topology
然后看一下nimbus.log日志
2017-04-09 22:00:12.502 o.a.s.d.common [INFO] Started statistics report plugin...2017-04-09 22:00:12.575 o.a.s.d.nimbus [INFO] Starting nimbus server for storm version '1.0.0'2017-04-09 22:03:13.661 o.a.s.d.nimbus [INFO] Uploading file from client to /bigdata/storm/datas/nimbus/inbox/stormjar-f16a2908-869a-418d-a589-ff6c7968724f.jar2017-04-09 22:03:16.163 o.a.s.d.nimbus [INFO] Finished uploading file from client: /bigdata/storm/datas/nimbus/inbox/stormjar-f16a2908-869a-418d-a589-ff6c7968724f.jar2017-04-09 22:03:16.328 o.a.s.d.nimbus [INFO] Received topology submission for testTopologySubmit with conf {"topology.max.task.parallelism" nil, "topology.submitter.principal" "", "topology.acker.executors" nil, "topology.eventlogger.executors" 0, "topology.workers" 2, "topology.debug" false, "storm.zookeeper.superACL" nil, "topology.users" (), "topology.submitter.user" "root", "topology.kryo.register" nil, "topology.kryo.decorators" (), "storm.id" "testTopologySubmit-1-1491800596", "topology.name" "testTopologySubmit"}2017-04-09 22:03:16.335 o.a.s.d.nimbus [INFO] uploadedJar /bigdata/storm/datas/nimbus/inbox/stormjar-f16a2908-869a-418d-a589-ff6c7968724f.jar
获取集群可用的solts:
可以看到分配到了slave1和slave2的6700端口
slave1--132机器
slave2-134机器
Step2:现在整个集群还有A-6701,A-6702,A-6703,B-6701,B-6702,B-6703,现在假如我要提交一个新的topology,然后只有1个worker,那么它会分配到A-6701,那么如果后面每次都提交只需要一个worker的topology,那么会导致A机器端口已经被分配完了,而B机器还有3个可用的端口,所有storm的任务调度也不是很公平的,A机器已经满载了,B机器还有3个可用端口。