yolo.v2 darknet19结构

时间:2021-04-09 09:11:59
Darknet19(
(conv1s): Sequential(
(0): Sequential(
(0): Conv2d_BatchNorm(
(conv): Conv2d(3, 32, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)
(bn): BatchNorm2d(32, eps=1e-05, momentum=0.01, affine=True)
(relu): LeakyReLU(0.1, inplace)
)
)
(1): Sequential(
(0): MaxPool2d(kernel_size=(2, 2), stride=(2, 2), dilation=(1, 1), ceil_mode=False)
(1): Conv2d_BatchNorm(
(conv): Conv2d(32, 64, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)
(bn): BatchNorm2d(64, eps=1e-05, momentum=0.01, affine=True)
(relu): LeakyReLU(0.1, inplace)
)
)
(2): Sequential(
(0): MaxPool2d(kernel_size=(2, 2), stride=(2, 2), dilation=(1, 1), ceil_mode=False)
(1): Conv2d_BatchNorm(
(conv): Conv2d(64, 128, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)
(bn): BatchNorm2d(128, eps=1e-05, momentum=0.01, affine=True)
(relu): LeakyReLU(0.1, inplace)
)
(2): Conv2d_BatchNorm(
(conv): Conv2d(128, 64, kernel_size=(1, 1), stride=(1, 1), bias=False)
(bn): BatchNorm2d(64, eps=1e-05, momentum=0.01, affine=True)
(relu): LeakyReLU(0.1, inplace)
)
(3): Conv2d_BatchNorm(
(conv): Conv2d(64, 128, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)
(bn): BatchNorm2d(128, eps=1e-05, momentum=0.01, affine=True)
(relu): LeakyReLU(0.1, inplace)
)
)
(3): Sequential(
(0): MaxPool2d(kernel_size=(2, 2), stride=(2, 2), dilation=(1, 1), ceil_mode=False)
(1): Conv2d_BatchNorm(
(conv): Conv2d(128, 256, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)
(bn): BatchNorm2d(256, eps=1e-05, momentum=0.01, affine=True)
(relu): LeakyReLU(0.1, inplace)
)
(2): Conv2d_BatchNorm(
(conv): Conv2d(256, 128, kernel_size=(1, 1), stride=(1, 1), bias=False)
(bn): BatchNorm2d(128, eps=1e-05, momentum=0.01, affine=True)
(relu): LeakyReLU(0.1, inplace)
)
(3): Conv2d_BatchNorm(
(conv): Conv2d(128, 256, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)
(bn): BatchNorm2d(256, eps=1e-05, momentum=0.01, affine=True)
(relu): LeakyReLU(0.1, inplace)
)
)
(4): Sequential(
(0): MaxPool2d(kernel_size=(2, 2), stride=(2, 2), dilation=(1, 1), ceil_mode=False)
(1): Conv2d_BatchNorm(
(conv): Conv2d(256, 512, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)
(bn): BatchNorm2d(512, eps=1e-05, momentum=0.01, affine=True)
(relu): LeakyReLU(0.1, inplace)
)
(2): Conv2d_BatchNorm(
(conv): Conv2d(512, 256, kernel_size=(1, 1), stride=(1, 1), bias=False)
(bn): BatchNorm2d(256, eps=1e-05, momentum=0.01, affine=True)
(relu): LeakyReLU(0.1, inplace)
)
(3): Conv2d_BatchNorm(
(conv): Conv2d(256, 512, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)
(bn): BatchNorm2d(512, eps=1e-05, momentum=0.01, affine=True)
(relu): LeakyReLU(0.1, inplace)
)
(4): Conv2d_BatchNorm(
(conv): Conv2d(512, 256, kernel_size=(1, 1), stride=(1, 1), bias=False)
(bn): BatchNorm2d(256, eps=1e-05, momentum=0.01, affine=True)
(relu): LeakyReLU(0.1, inplace)
)
(5): Conv2d_BatchNorm(
(conv): Conv2d(256, 512, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)
(bn): BatchNorm2d(512, eps=1e-05, momentum=0.01, affine=True)
(relu): LeakyReLU(0.1, inplace)
)
)
) (conv2): Sequential(
(0): MaxPool2d(kernel_size=(2, 2), stride=(2, 2), dilation=(1, 1), ceil_mode=False)
(1): Conv2d_BatchNorm(
(conv): Conv2d(512, 1024, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)
(bn): BatchNorm2d(1024, eps=1e-05, momentum=0.01, affine=True)
(relu): LeakyReLU(0.1, inplace)
)
(2): Conv2d_BatchNorm(
(conv): Conv2d(1024, 512, kernel_size=(1, 1), stride=(1, 1), bias=False)
(bn): BatchNorm2d(512, eps=1e-05, momentum=0.01, affine=True)
(relu): LeakyReLU(0.1, inplace)
)
(3): Conv2d_BatchNorm(
(conv): Conv2d(512, 1024, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)
(bn): BatchNorm2d(1024, eps=1e-05, momentum=0.01, affine=True)
(relu): LeakyReLU(0.1, inplace)
)
(4): Conv2d_BatchNorm(
(conv): Conv2d(1024, 512, kernel_size=(1, 1), stride=(1, 1), bias=False)
(bn): BatchNorm2d(512, eps=1e-05, momentum=0.01, affine=True)
(relu): LeakyReLU(0.1, inplace)
)
(5): Conv2d_BatchNorm(
(conv): Conv2d(512, 1024, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)
(bn): BatchNorm2d(1024, eps=1e-05, momentum=0.01, affine=True)
(relu): LeakyReLU(0.1, inplace)
)
) (conv3): Sequential(
(0): Conv2d_BatchNorm(
(conv): Conv2d(1024, 1024, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)
(bn): BatchNorm2d(1024, eps=1e-05, momentum=0.01, affine=True)
(relu): LeakyReLU(0.1, inplace)
)
(1): Conv2d_BatchNorm(
(conv): Conv2d(1024, 1024, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)
(bn): BatchNorm2d(1024, eps=1e-05, momentum=0.01, affine=True)
(relu): LeakyReLU(0.1, inplace)
)
)
(reorg): ReorgLayer(
) (conv4): Sequential(
(0): Conv2d_BatchNorm(
(conv): Conv2d(3072, 1024, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)
(bn): BatchNorm2d(1024, eps=1e-05, momentum=0.01, affine=True)
(relu): LeakyReLU(0.1, inplace)
)
) (conv5): Conv2d(
(conv): Conv2d(1024, 125, kernel_size=(1, 1), stride=(1, 1))
) (global_average_pool): AvgPool2d(kernel_size=(1, 1), stride=(1, 1), padding=0, ceil_mode=False, count_include_pad=True)
)