001 KNN分类 最邻近算法

时间:2022-12-09 08:20:36

1.文件
5.0,3.5,1.6,0.6,apple
5.1,3.8,1.9,0.4,apple
4.8,3.0,1.4,0.3,apple
5.1,3.8,1.6,0.2,apple
4.6,3.2,1.4,0.2,apple
5.3,3.7,1.5,0.2,apple
5.0,3.3,1.4,0.2,apple
7.0,3.2,4.7,1.4,orange
6.4,3.2,4.5,1.5,orange
6.9,3.1,4.9,1.5,orange
5.5,2.3,4.0,1.3,orange
6.5,2.8,4.6,1.5,orange
5.7,2.8,4.5,1.3,orange
6.3,3.3,4.7,1.6,orange
7.3,2.9,6.3,1.8,banana
6.7,2.5,5.8,1.8,banana
7.2,3.6,6.1,2.5,banana
6.5,3.2,5.1,2.0,banana
6.4,2.7,5.3,1.9,banana
6.8,3.0,5.5,2.1,banana
5.7,2.5,5.0,2.0,banana
5.8,2.8,5.1,2.4,banana

2 代码

# -*- coding: UTF-8 -*-
import math
import csv
import random
import operator '''
@author:hunter
@time:2017.03.31
''' class KNearestNeighbor(object):
def __init__(self):
pass def loadDataset(self,filename, split, trainingSet, testSet): # 加载数据集 split以某个值为界限分类train和test
with open(filename, 'r') as csvfile:
lines = csv.reader(csvfile) #读取所有的行
dataset = list(lines) #转化成列表
for x in range(len(dataset)-1):
for y in range(4):
dataset[x][y] = float(dataset[x][y])
if random.random() < split: # 将所有数据加载到train和test中 生成0和1的随机浮点数
trainingSet.append(dataset[x])
else:
testSet.append(dataset[x]) def calculateDistance(self,testdata, traindata, length): # 计算距离
distance = 0 # length表示维度 数据共有几维
for x in range(length):
distance += pow((testdata[x]-traindata[x]), 2)
return math.sqrt(distance) def getNeighbors(self,trainingSet, testInstance, k): # 返回最近的k个边距
distances = []
length = len(testInstance)-1
for x in range(len(trainingSet)): #对训练集的每一个数计算其到测试集的实际距离
dist = self.calculateDistance(testInstance, trainingSet[x], length)
print('训练集:{}-距离:{}'.format(trainingSet[x], dist))
distances.append((trainingSet[x], dist))
distances.sort(key=operator.itemgetter(1)) # 把距离从小到大排列
neighbors = []
for x in range(k): #排序完成后取前k个距离
neighbors.append(distances[x][0])
print(neighbors)
return neighbors def getResponse(self,neighbors): # 根据少数服从多数,决定归类到哪一类
classVotes = {}
for x in range(len(neighbors)):
response = neighbors[x][-1] # 统计每一个分类的多少
if response in classVotes:
classVotes[response] += 1
else:
classVotes[response] = 1 # 初始值为1
print(classVotes.items())
sortedVotes = sorted(classVotes.items(), key=operator.itemgetter(1), reverse=True) #reverse按降序的方式排列
return sortedVotes[0][0] def getAccuracy(self,testSet, predictions): # 准确率计算
correct = 0
for x in range(len(testSet)):
if testSet[x][-1] == predictions[x]: #predictions是预测的和testset实际的比对
correct += 1
print('共有{}个预测正确,共有{}个测试数据'.format(correct,len(testSet)))
return (correct/float(len(testSet)))*100.0 def Run(self):
trainingSet = []
testSet = []
split = 0.75
self.loadDataset(r'testdata.txt', split, trainingSet, testSet) #数据划分
print('Train set: ' + str(len(trainingSet)))
print('Test set: ' + str(len(testSet)))
#generate predictions
predictions = []
k = 3 # 取最近的3个数据
# correct = []
for x in range(len(testSet)): # 对所有的测试集进行测试
neighbors = self.getNeighbors(trainingSet, testSet[x], k) #找到3个最近的邻居
result = self.getResponse(neighbors) # 找这3个邻居归类到哪一类
predictions.append(result)
# print('predictions: ' + repr(predictions)) 返回一个它在python中的描述
# print('>predicted=' + repr(result) + ', actual=' + repr(testSet[x][-1]))
# print(correct)
accuracy = self.getAccuracy(testSet,predictions)
print('Accuracy: ' + repr(accuracy) + '%') if __name__ == '__main__':
a = KNearestNeighbor()
a.Run()