poj 3680 Intervals(费用流)

时间:2022-07-03 07:53:42

http://poj.org/problem?id=3680

巧妙的构图。

题目:给定N个区间(ai,bi)权值wi,求最大权和且每个点最多覆盖K次。

构图:将区间端点离散化,将第i个点连第i+1个点花费为0,容量为INF,即addedge(i,i+1,0,INF)(可用来跳过一些区间);

   再处理N个区间(ai,bi),addedge(ai,bi,-wi,1);

   最后源点连第一个点,addedge(src,1,0,k);最后一个点连汇点,addedge(n,sink,0,k)。

原理:构完图之后做最小费用最大流,其实就是找不大于K条增广路。如果两个区间有交集,则不能一次流过,要分成两条增广路流过;反之,则可一次流过。

 /*
*Author: Zhaofa Fang
*Created time: 2013-07-19-10.41
*Language: C++
*/
#include <cstdio>
#include <cstdlib>
#include <sstream>
#include <iostream>
#include <cmath>
#include <cstring>
#include <algorithm>
#include <string>
#include <utility>
#include <vector>
#include <queue>
#include <map>
#include <set>
using namespace std; typedef long long ll;
typedef pair<int,int> PII;
#define DEBUG(x) cout<< #x << ':' << x << endl
#define FOR(i,s,t) for(int i = (s);i <= (t);i++)
#define FORD(i,s,t) for(int i = (s);i >= (t);i--)
#define REP(i,n) for(int i=0;i<(n);i++)
#define REPD(i,n) for(int i=(n-1);i>=0;i--)
#define PII pair<int,int>
#define PB push_back
#define MP make_pair
#define ft first
#define sd second
#define lowbit(x) (x&(-x))
#define INF (1<<30)
#define eps (1e-8) const int maxm = ;
const int maxn = ;
int ans,anscost;
struct Edge {
int u,v,cost,cap,flow,next;
}et[maxm];
int S,T;
int eh[maxn],tot,low[maxn],p[maxn],dist[maxn];
bool vist[maxn];
bool spfa(){
queue<int>que;
memset(vist,,sizeof(vist));
memset(p,-,sizeof(p));
fill(dist,dist+maxn,INF);
vist[S] = ,low[S] = INF,dist[S] = ;
que.push(S);
while(!que.empty()){
int u = que.front();
que.pop();
vist[u] = false;
for(int i=eh[u];i!=-;i=et[i].next){
int v = et[i].v,cost = et[i].cost,cap=et[i].cap,flow=et[i].flow;
if(flow < cap && dist[u] + cost < dist[v]){
dist[v] = dist[u] + cost;
p[v] = i;
low[v] = min(low[u],cap-flow);
if(!vist[v]){
vist[v] = ;
que.push(v);
}
}
}
}
return dist[T]!=INF;
}
void costflow(){
ans = ,anscost = ;
int num=;
while(spfa()){
int x = p[T];
ans += low[T];
anscost += low[T]*dist[T];
while(x!=-){
et[x].flow += low[T];
et[x^].flow -= low[T];
et[x^].cost = -et[x].cost;
x = p[et[x].u];
}
}
}
void add(int u,int v,int cost,int cap,int flow){
Edge e = {u,v,cost,cap,flow,eh[u]};
et[tot] = e;
eh[u] = tot ++;
}
void addedge(int u,int v,int cost,int cap){
add(u,v,cost,cap,);add(v,u,-cost,,);
}
void init(){
tot = ;
memset(eh,-,sizeof(eh));
}
int X[maxn];
int a[maxn],b[maxn],w[maxn];
int find(int key,int n){
int r = lower_bound(X,X+n,key)-X;
return r+;
}
int main(){
//freopen("in","r",stdin);
//freopen("out","w",stdout);
int Ca;
scanf("%d",&Ca);
while(Ca--){
int N,K;
scanf("%d%d",&N,&K);
int cnt = ;
init();
REP(i,N){
scanf("%d%d%d",&a[i],&b[i],&w[i]);
X[cnt++]=a[i];X[cnt++]=b[i];
w[i] = -w[i];
}
sort(X,X+cnt);
int n = ;
FOR(i,,cnt-){
if(X[i]!=X[i-])X[n++]=X[i];
}
REP(i,n-){
addedge(i+,i+,,INF);
}
REP(i,N){
int l = find(a[i],n);
int r = find(b[i],n);
addedge(l,r,w[i],);
}
addedge(,,,K);
addedge(n,n+,,K);
S = ;T = n+;costflow();
printf("%d\n",-anscost); }
return ;
}

1300+MS