POJ 3422 Kaka's Matrix Travels(费用流)

时间:2022-09-29 05:36:19

POJ 3422 Kaka's Matrix Travels

题目链接

题意:一个矩阵。从左上角往右下角走k趟,每次走过数字就变成0,而且获得这个数字,要求走完之后,所获得数字之和最大

思路:有点类似区间k覆盖的建图方法,把点拆了,每一个点有值的仅仅能选一次,其它都是无值的。利用费用流,入点出点之间连一条容量1,有费用的边,和一条容量k - 1,费用0的边,然后其它就每一个点和右边和下边2个点连边。然后跑费用流

代码:

#include <cstdio>
#include <cstring>
#include <vector>
#include <queue>
#include <algorithm>
using namespace std; const int MAXNODE = 5005;
const int MAXEDGE = 100005;
typedef int Type;
const Type INF = 0x3f3f3f3f; struct Edge {
int u, v;
Type cap, flow, cost;
Edge() {}
Edge(int u, int v, Type cap, Type flow, Type cost) {
this->u = u;
this->v = v;
this->cap = cap;
this->flow = flow;
this->cost = cost;
}
}; struct MCFC {
int n, m, s, t;
Edge edges[MAXEDGE];
int first[MAXNODE];
int next[MAXEDGE];
int inq[MAXNODE];
Type d[MAXNODE];
int p[MAXNODE];
Type a[MAXNODE]; void init(int n) {
this->n = n;
memset(first, -1, sizeof(first));
m = 0;
} void add_Edge(int u, int v, Type cap, Type cost) {
edges[m] = Edge(u, v, cap, 0, cost);
next[m] = first[u];
first[u] = m++;
edges[m] = Edge(v, u, 0, 0, -cost);
next[m] = first[v];
first[v] = m++;
} bool bellmanford(int s, int t, Type &flow, Type &cost) { for (int i = 0; i < n; i++) d[i] = INF;
memset(inq, false, sizeof(inq));
d[s] = 0; inq[s] = true; p[s] = s; a[s] = INF;
queue<int> Q;
Q.push(s);
while (!Q.empty()) {
int u = Q.front(); Q.pop();
inq[u] = false;
for (int i = first[u]; i != -1; i = next[i]) {
Edge& e = edges[i];
if (e.cap > e.flow && d[e.v] > d[u] + e.cost) {
d[e.v] = d[u] + e.cost;
p[e.v] = i;
a[e.v] = min(a[u], e.cap - e.flow);
if (!inq[e.v]) {Q.push(e.v); inq[e.v] = true;}
}
}
}
if (d[t] == INF) return false;
flow += a[t];
cost += d[t] * a[t];
int u = t;
while (u != s) {
edges[p[u]].flow += a[t];
edges[p[u]^1].flow -= a[t];
u = edges[p[u]].u;
}
return true;
} Type Mincost(int s, int t) {
Type flow = 0, cost = 0;
while (bellmanford(s, t, flow, cost));
return cost;
}
} gao; const int N = 55;
const int d[2][2] = {0, 1, 1, 0}; int n, k, g[N][N]; int main() {
while (~scanf("%d%d", &n, &k)) {
gao.init(n * n * 2);
for (int i = 0; i < n; i++)
for (int j = 0; j < n; j++) {
scanf("%d", &g[i][j]);
gao.add_Edge(i * n + j, i * n + j + n * n, k - 1, 0);
gao.add_Edge(i * n + j, i * n + j + n * n, 1, -g[i][j]);
}
for (int i = 0; i < n; i++) {
for (int j = 0; j < n; j++) {
for (int a = 0; a < 2; a++) {
int x = i + d[a][0];
int y = j + d[a][1];
if (x < 0 || x >= n || y < 0 || y >= n) continue;
int u = i * n + j, v = x * n + y;
gao.add_Edge(u + n * n, v, k - 1, 0);
}
}
}
printf("%d\n", -gao.Mincost(0, n * n * 2 - 1));
}
return 0;
}

版权声明:本文博客原创文章,博客,未经同意,不得转载。