POJ原题链接
洛谷原题链接
很裸的费用流。
将每个点\(x\)拆成\(x_1,x_2\),并从\(x_1\)向\(x_2\)连一条容量为\(1\),费用为该点的权值的边,以及一条容量为\(+\infty\),费用为\(0\)的边。
设\(x\)下方的点为\(y\),右边的点为\(z\)(如果存在),则从\(x_2\)向\(y_1,z_1\)连一条容量为\(+\infty\),费用为\(0\)的边。
最后由源点向原坐标为\((1,1)\)的点连一条容量为\(k\),费用为\(0\)的边,由原坐标为\((n,n)\)的点向汇点连一条容量为\(k\),费用为\(0\)的边。
然后跑最大费用最大流即可。
#include<cstdio>
#include<cstring>
using namespace std;
const int N = 1e4 + 10;
const int M = 1e5 + 10;
int fi[N], di[M], da[M], ne[M], co[M], la[M], cn[M], q[M << 2], dis[N], l = 1, st, ed, n;
bool v[N];
inline int re()
{
int x = 0;
char c = getchar();
bool p = 0;
for (; c < '0' || c > '9'; c = getchar())
p |= c == '-';
for (; c >= '0' && c <= '9'; c = getchar())
x = x * 10 + c - '0';
return p ? -x : x;
}
inline void add(int x, int y, int z, int c)
{
di[++l] = y;
da[l] = z;
co[l] = c;
ne[l] = fi[x];
fi[x] = l;
di[++l] = x;
da[l] = 0;
co[l] = -c;
ne[l] = fi[y];
fi[y] = l;
}
inline int minn(int x, int y)
{
return x < y ? x : y;
}
inline int ch(int x, int y)
{
return (x - 1) * n + y;
}
bool spfa()
{
int head = 0, tail = 1, i, x, y;
memset(dis, 250, sizeof(dis));
dis[st] = 0;
q[1] = st;
while (head ^ tail)
{
x = q[++head];
v[x] = 0;
for (i = fi[x]; i; i = ne[i])
if (dis[y = di[i]] < dis[x] + co[i] && da[i] > 0)
{
dis[y] = dis[x] + co[i];
la[y] = x;
cn[y] = i;
if (!v[y])
{
v[y] = 1;
q[++tail] = y;
}
}
}
return dis[ed] > -1e7;
}
int main()
{
int i, j, m, x, y, mi, s = 0, o;
n = re();
m = re();
st = (o = n * n) << 1 | 1;
ed = st + 1;
for (i = 1; i <= n; i++)
for (j = 1; j <= n; j++)
{
x = re();
y = ch(i, j);
add(y, y + o, 1, x);
add(y, y + o, 1e9, 0);
if (i < n)
add(y + o, ch(i + 1, j), 1e9, 0);
if (j < n)
add(y + o, ch(i, j + 1), 1e9, 0);
}
add(st, 1, m, 0);
add(st ^ 1, ed, m, 0);
while (spfa())
{
mi = 1e9;
for (i = ed; i ^ st; i = la[i])
mi = minn(mi, da[cn[i]]);
s += mi * dis[ed];
for (i = ed; i ^ st; i = la[i])
{
da[cn[i]] -= mi;
da[cn[i] ^ 1] += mi;
}
}
printf("%d", s);
return 0;
}