题目大意:给定n个数字以及每个数字的个数和权值,将满足条件的数字配对,使得总代价不小于0,且配对最多
最大费用最大流拆点,对于每个点,连一条由S到该点的边,容量为b,花费为0,再连一条到T的边
对于每个合法的配对,连一条容量无穷,费用为ci*cj的边
跑最大费用最大流即可
#include<bits/stdc++.h>
using namespace std;
#define inf (1ll<<50)
#define ll long long
struct edge{
int to,next,flom;
ll cost,cap;
}G[];
int tot=,h[];
int S,T,ans;
ll cost;
int n;
int a[],b[],c[];
void add(int x,int y,ll z,ll c){
tot++;G[tot].to=y;G[tot].next=h[x];h[x]=tot;G[tot].flom=x;G[tot].cap=z;G[tot].cost=c;
}
void ins(int x,int y,ll z,ll c){
add(x,y,z,c);add(y,x,,-c);
}
ll dis[];int vis[],p[];
bool check(int x){
int k=sqrt(x);
for(int i=;i<=k;++i)
if(x%i==)return ;
return ;
}
bool spfa(){
memset(vis,,sizeof(vis));
memset(p,,sizeof(p));
for(int i=;i<=(n<<|);++i)dis[i]=-inf;dis[S]=;
queue<int>Q;Q.push(S);vis[S]=;
while(!Q.empty()){
int u=Q.front();Q.pop();vis[u]=;
for(int i=h[u];i;i=G[i].next){
int v=G[i].to;
if(G[i].cap>&&dis[v]<dis[u]+G[i].cost){
dis[v]=dis[u]+G[i].cost;p[v]=i;
if(!vis[v])vis[v]=,Q.push(v);
}
}
}
return dis[T]>-inf;
}
void mcf(){
int t=T;ll k=inf;
while(t){
t=p[t];k=min(k,G[t].cap);t=G[t].flom;
}
t=T;ll c=;
while(t){
t=p[t];c+=G[t].cost;G[t].cap-=k;G[t^].cap+=k;t=G[t].flom;
}
if(cost+c*k>=){
ans+=k;cost+=c*k;
}else{
k=cost/(-c);
ans+=k;
printf("%d\n",ans/);
exit();
}
}
int main(){
scanf("%d",&n);S=,T=;
for(int i=;i<=n;++i)scanf("%d",&a[i]);
for(int i=;i<=n;++i)scanf("%d",&b[i]);
for(int i=;i<=n;++i)scanf("%d",&c[i]);
for(int i=;i<=n;++i)ins(S,i<<,b[i],);
for(int i=;i<=n;++i)ins(i<<|,T,b[i],);
for(int i=;i<=n;++i)
for(int j=i+;j<=n;++j)
if((a[i]%a[j]==||a[j]%a[i]==)&&a[i]!=a[j]){
int k=a[i]>a[j]?a[i]/a[j]:a[j]/a[i];
if(check(k))ins(i<<,j<<|,inf,1ll*c[i]*c[j]),ins(j<<,i<<|,inf,1ll*c[i]*c[j]);
}
while(spfa())mcf();
printf("%d\n",ans/);
}